Suppr超能文献

亚铁离子通过铁蛋白蛋白笼离子通道的底物转运影响酶活性和生物矿化。

Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

作者信息

Behera Rabindra K, Torres Rodrigo, Tosha Takehiko, Bradley Justin M, Goulding Celia W, Theil Elizabeth C

机构信息

Children's Hospital Oakland Research Institute (CHORI), 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.

出版信息

J Biol Inorg Chem. 2015 Sep;20(6):957-69. doi: 10.1007/s00775-015-1279-x. Epub 2015 Jul 23.

Abstract

Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

摘要

铁蛋白是一种复杂的蛋白质纳米笼,通过将细胞质中的Fe(2+)通过笼内离子通道移动到笼内嵌入酶(2Fe(2+)/O2氧化还原酶)位点来形成内部铁氧矿物(Fe2O3·H2O),铁蛋白生物矿化在此处开始。铁蛋白酶活性的产物是二价铁氧复合物,它们是矿物前体。来自三个笼亚基中每个亚基的D127的保守羧酸盐氨基酸侧链伸向内部离子通道出口附近的铁蛋白离子通道,因此可以将Fe(2+)引导至内部酶位点。设计并分析了铁蛋白D127E,以探究内部离子通道开口附近的离子通道大小和羧酸盐拥挤的特性。谷氨酸侧链在化学上与天冬氨酸侧链等效,但长一个-CH2。铁蛋白D127E组装成正常的蛋白质笼,但在650nm(DFPλmax)处测量时未观察到二价铁过氧化物的形成(酶活性)。在宽的非特异性Fe(3+)-O吸收带中间350nm处测量的笼内生物矿化形成较慢。野生型和铁蛋白D127E的离子通道之间的结构差异(蛋白质X射线晶体学)与铁蛋白D127E酶活性的抑制相关,包括:(1)内部离子通道开口/孔变窄;(2)离子通道蛋白-金属结合位点数量增加,以及(3)由于羧酸盐拥挤导致的离子通道静电变化。离子通道大小和结构对铁蛋白活性的贡献反映了铁蛋白蛋白质纳米笼和活细胞膜中离子通道中金属离子的运输受到精确调节。

相似文献

1
Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.
J Biol Inorg Chem. 2015 Sep;20(6):957-69. doi: 10.1007/s00775-015-1279-x. Epub 2015 Jul 23.
2
Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
Acc Chem Res. 2016 May 17;49(5):784-91. doi: 10.1021/ar500469e. Epub 2016 May 2.
3
Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7925-30. doi: 10.1073/pnas.1318417111. Epub 2014 May 19.
4
Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.
Inorg Chem. 2012 Nov 5;51(21):11406-11. doi: 10.1021/ic3010135. Epub 2012 Oct 23.
5
Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit.
J Biol Chem. 2011 Jul 22;286(29):25620-7. doi: 10.1074/jbc.M110.205278. Epub 2011 May 18.
6
Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes.
J Biol Inorg Chem. 2014 Jun;19(4-5):615-22. doi: 10.1007/s00775-014-1103-z. Epub 2014 Feb 7.
7
Ferritin protein nanocage ion channels: gating by N-terminal extensions.
J Biol Chem. 2012 Apr 13;287(16):13016-25. doi: 10.1074/jbc.M111.332734. Epub 2012 Feb 23.
8
Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites.
Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):941-53. doi: 10.1107/S1399004715002333. Epub 2015 Mar 27.
9
Moving metal ions through ferritin-protein nanocages from three-fold pores to catalytic sites.
J Am Chem Soc. 2010 Oct 20;132(41):14562-9. doi: 10.1021/ja105583d.
10
Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry.
Curr Opin Chem Biol. 2011 Apr;15(2):304-11. doi: 10.1016/j.cbpa.2011.01.004. Epub 2011 Feb 4.

引用本文的文献

1
Perls' Prussian blue staining and chemistry of Prussian blue and Turnbull blue.
Forensic Sci Int Synerg. 2025 Jul 10;11:100627. doi: 10.1016/j.fsisyn.2025.100627. eCollection 2025 Dec.
3
Observation of the Assembly of the Nascent Mineral Core at the Nucleation Site of Human Mitochondrial Ferritin.
J Am Chem Soc. 2025 Apr 23;147(16):13699-13710. doi: 10.1021/jacs.5c01337. Epub 2025 Apr 13.
5
Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology.
ACS Bio Med Chem Au. 2022 Mar 1;2(3):258-281. doi: 10.1021/acsbiomedchemau.2c00003. eCollection 2022 Jun 15.
6
Design of a gold clustering site in an engineered apo-ferritin cage.
Commun Chem. 2022 Mar 21;5(1):39. doi: 10.1038/s42004-022-00651-1.
7
Structural and Functional Insights into the Roles of Potential Metal-Binding Sites in Ferritin.
Polymers (Basel). 2022 Dec 8;14(24):5378. doi: 10.3390/polym14245378.
9
Structural Insights Into the Effects of Interactions With Iron and Copper Ions on Ferritin From the Blood Clam .
Front Mol Biosci. 2022 Mar 11;9:800008. doi: 10.3389/fmolb.2022.800008. eCollection 2022.
10
Crystallographic characterization of a marine invertebrate ferritin from the sea cucumber Apostichopus japonicus.
FEBS Open Bio. 2022 Mar;12(3):664-674. doi: 10.1002/2211-5463.13375. Epub 2022 Feb 7.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites.
Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):941-53. doi: 10.1107/S1399004715002333. Epub 2015 Mar 27.
3
Ferritin: a versatile building block for bionanotechnology.
Chem Rev. 2015 Feb 25;115(4):1653-701. doi: 10.1021/cr400011b. Epub 2015 Feb 16.
4
The B-type channel is a major route for iron entry into the ferroxidase center and central cavity of bacterioferritin.
J Biol Chem. 2015 Feb 6;290(6):3732-9. doi: 10.1074/jbc.M114.623082. Epub 2014 Dec 15.
5
Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin.
Chem Rev. 2015 Jan 14;115(1):295-326. doi: 10.1021/cr5004908. Epub 2014 Nov 24.
6
Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7925-30. doi: 10.1073/pnas.1318417111. Epub 2014 May 19.
8
Calculation of iron transport through human H-chain ferritin.
J Phys Chem A. 2014 Sep 4;118(35):7442-53. doi: 10.1021/jp500198u. Epub 2014 Mar 7.
9
Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.
Acc Chem Res. 2013 Nov 19;46(11):2676-85. doi: 10.1021/ar4000983. Epub 2013 Sep 3.
10
Ferritins for Chemistry and for Life.
Coord Chem Rev. 2013 Jan 15;257(2):579-586. doi: 10.1016/j.ccr.2012.05.013. Epub 2012 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验