Suppr超能文献

铁离子在铁蛋白蛋白纳米笼中的移动依赖于每个四螺旋束亚基中的各个残基。

Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit.

机构信息

Children's Hospital Oakland Research Institute, Oakland, California 94609 , USA.

出版信息

J Biol Chem. 2011 Jul 22;286(29):25620-7. doi: 10.1074/jbc.M110.205278. Epub 2011 May 18.

Abstract

Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²⁺/O₂ oxidoreduction and formation of Fe³⁺O multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²⁺-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²⁺ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³⁺O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³⁺O-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe²⁺ access/selectivity to the active sites (Glu¹³⁰), (ii) distribution of Fe²⁺ to each of the three active sites near each ion channel (Asp¹²⁷), (iii) product (diferric oxo) release into the Fe³⁺O nucleation channels (Ala²⁶), and (iv) Fe³⁺O transit through subunits (Val⁴², Thr¹⁴⁹). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²⁺ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.

摘要

真核生物 H 铁蛋白通过蛋白笼将铁运送到形成生物必需的铁矿物浓缩物。在基于蛋白质的 Fe²⁺/O₂氧化还原过程中合成生物矿化物质,并在蛋白笼内形成 Fe³⁺O 多聚体,沿途在分布于约 50 Å 的位点进入空腔。最近的 NMR 和 Co²⁺-蛋白 X 射线衍射 (XRD) 研究确定了整个铁途径和新的金属-蛋白相互作用:(i)在 8 个 Fe²⁺离子入口通道中有一系列金属离子,在通道出口处有三向金属分配点,(ii)内部 Fe³⁺O 成核通道。为了获得新鉴定的金属-蛋白相互作用的功能信息,我们分析了氨基酸取代对最早的催化中间物(双铁过氧-A(650nm))形成和矿物生长(Fe³⁺O-A(350nm))的影响,在 A26S、V42G、D127A、E130A 和 T149C 中。结果表明,所有残基都显著影响催化作用(p < 0.01),对四种功能有影响:(i)Fe²⁺进入/选择性到达活性部位(Glu¹³⁰),(ii)Fe²⁺分配到每个离子通道附近的三个活性部位(Asp¹²⁷),(iii)产物(双铁过氧)释放到 Fe³⁺O 成核通道(Ala²⁶),以及(iv)Fe³⁺O穿过亚基(Val⁴²、Thr¹⁴⁹)。铁蛋白生物矿化的合成取决于 H 亚基全长的残基,从 3 倍笼轴处的 Fe²⁺底物进入一端的笼,穿过活性部位和成核通道,到另一端的笼内,在 4 倍笼轴处。铁蛋白亚基-亚基的几何形状有助于矿物有序性,并解释了铁蛋白 H 和 L 亚基的生理影响。

相似文献

1
Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit.
J Biol Chem. 2011 Jul 22;286(29):25620-7. doi: 10.1074/jbc.M110.205278. Epub 2011 May 18.
2
Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.
Inorg Chem. 2012 Nov 5;51(21):11406-11. doi: 10.1021/ic3010135. Epub 2012 Oct 23.
3
Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
Acc Chem Res. 2016 May 17;49(5):784-91. doi: 10.1021/ar500469e. Epub 2016 May 2.
4
Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7925-30. doi: 10.1073/pnas.1318417111. Epub 2014 May 19.
5
Ferritin protein nanocage ion channels: gating by N-terminal extensions.
J Biol Chem. 2012 Apr 13;287(16):13016-25. doi: 10.1074/jbc.M111.332734. Epub 2012 Feb 23.
6
Moving metal ions through ferritin-protein nanocages from three-fold pores to catalytic sites.
J Am Chem Soc. 2010 Oct 20;132(41):14562-9. doi: 10.1021/ja105583d.
7
Maxi- and mini-ferritins: minerals and protein nanocages.
Prog Mol Subcell Biol. 2011;52:29-47. doi: 10.1007/978-3-642-21230-7_2.
8
Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes.
J Biol Inorg Chem. 2014 Jun;19(4-5):615-22. doi: 10.1007/s00775-014-1103-z. Epub 2014 Feb 7.
9
Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.
J Biol Inorg Chem. 2015 Sep;20(6):957-69. doi: 10.1007/s00775-015-1279-x. Epub 2015 Jul 23.
10
The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18182-7. doi: 10.1073/pnas.0805083105. Epub 2008 Nov 14.

引用本文的文献

1
Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology.
ACS Bio Med Chem Au. 2022 Mar 1;2(3):258-281. doi: 10.1021/acsbiomedchemau.2c00003. eCollection 2022 Jun 15.
2
Structural and Functional Insights into the Roles of Potential Metal-Binding Sites in Ferritin.
Polymers (Basel). 2022 Dec 8;14(24):5378. doi: 10.3390/polym14245378.
3
Structural Insights Into the Effects of Interactions With Iron and Copper Ions on Ferritin From the Blood Clam .
Front Mol Biosci. 2022 Mar 11;9:800008. doi: 10.3389/fmolb.2022.800008. eCollection 2022.
4
New Insights into the Role of Ferritin in Iron Homeostasis and Neurodegenerative Diseases.
Mol Neurobiol. 2021 Jun;58(6):2812-2823. doi: 10.1007/s12035-020-02277-7. Epub 2021 Jan 28.
5
Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes.
J Extracell Vesicles. 2018 Feb 28;7(1):1442088. doi: 10.1080/20013078.2018.1442088. eCollection 2018.
6
Native Electron Capture Dissociation Maps to Iron-Binding Channels in Horse Spleen Ferritin.
Anal Chem. 2017 Oct 17;89(20):10711-10716. doi: 10.1021/acs.analchem.7b01581. Epub 2017 Oct 4.
7
Chemistry at the protein-mineral interface in L-ferritin assists the assembly of a functional (μ-oxo)Tris[(μ-peroxo)] triiron(III) cluster.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2580-2585. doi: 10.1073/pnas.1614302114. Epub 2017 Feb 15.
8
Electrostatic and Structural Bases of Fe2+ Translocation through Ferritin Channels.
J Biol Chem. 2016 Dec 2;291(49):25617-25628. doi: 10.1074/jbc.M116.748046. Epub 2016 Oct 18.
10
Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.
J Biol Inorg Chem. 2015 Sep;20(6):957-69. doi: 10.1007/s00775-015-1279-x. Epub 2015 Jul 23.

本文引用的文献

1
Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry.
Curr Opin Chem Biol. 2011 Apr;15(2):304-11. doi: 10.1016/j.cbpa.2011.01.004. Epub 2011 Feb 4.
2
Moving metal ions through ferritin-protein nanocages from three-fold pores to catalytic sites.
J Am Chem Soc. 2010 Oct 20;132(41):14562-9. doi: 10.1021/ja105583d.
3
Iron core mineralisation in prokaryotic ferritins.
Biochim Biophys Acta. 2010 Aug;1800(8):732-44. doi: 10.1016/j.bbagen.2010.04.002. Epub 2010 Apr 11.
4
The iron redox and hydrolysis chemistry of the ferritins.
Biochim Biophys Acta. 2010 Aug;1800(8):719-31. doi: 10.1016/j.bbagen.2010.03.021. Epub 2010 Apr 9.
5
A gating charge transfer center in voltage sensors.
Science. 2010 Apr 2;328(5974):67-73. doi: 10.1126/science.1185954.
6
The multifaceted capacity of Dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding.
Biochim Biophys Acta. 2010 Aug;1800(8):798-805. doi: 10.1016/j.bbagen.2010.01.013. Epub 2010 Feb 4.
7
Role of Dps (DNA-binding proteins from starved cells) aggregation on DNA.
Front Biosci (Landmark Ed). 2010 Jan 1;15(1):122-31. doi: 10.2741/3610.
8
NMR reveals pathway for ferric mineral precursors to the central cavity of ferritin.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):545-50. doi: 10.1073/pnas.0908082106. Epub 2009 Dec 16.
9
Living with iron (and oxygen): questions and answers about iron homeostasis.
Chem Rev. 2009 Oct;109(10):4568-79. doi: 10.1021/cr900052g.
10
Catalysis of iron core formation in Pyrococcus furiosus ferritin.
J Biol Inorg Chem. 2009 Nov;14(8):1265-74. doi: 10.1007/s00775-009-0571-z. Epub 2009 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验