Children's Hospital Oakland Research Institute, Oakland, California 94609 , USA.
J Biol Chem. 2011 Jul 22;286(29):25620-7. doi: 10.1074/jbc.M110.205278. Epub 2011 May 18.
Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²⁺/O₂ oxidoreduction and formation of Fe³⁺O multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²⁺-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²⁺ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³⁺O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³⁺O-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe²⁺ access/selectivity to the active sites (Glu¹³⁰), (ii) distribution of Fe²⁺ to each of the three active sites near each ion channel (Asp¹²⁷), (iii) product (diferric oxo) release into the Fe³⁺O nucleation channels (Ala²⁶), and (iv) Fe³⁺O transit through subunits (Val⁴², Thr¹⁴⁹). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²⁺ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.
真核生物 H 铁蛋白通过蛋白笼将铁运送到形成生物必需的铁矿物浓缩物。在基于蛋白质的 Fe²⁺/O₂氧化还原过程中合成生物矿化物质,并在蛋白笼内形成 Fe³⁺O 多聚体,沿途在分布于约 50 Å 的位点进入空腔。最近的 NMR 和 Co²⁺-蛋白 X 射线衍射 (XRD) 研究确定了整个铁途径和新的金属-蛋白相互作用:(i)在 8 个 Fe²⁺离子入口通道中有一系列金属离子,在通道出口处有三向金属分配点,(ii)内部 Fe³⁺O 成核通道。为了获得新鉴定的金属-蛋白相互作用的功能信息,我们分析了氨基酸取代对最早的催化中间物(双铁过氧-A(650nm))形成和矿物生长(Fe³⁺O-A(350nm))的影响,在 A26S、V42G、D127A、E130A 和 T149C 中。结果表明,所有残基都显著影响催化作用(p < 0.01),对四种功能有影响:(i)Fe²⁺进入/选择性到达活性部位(Glu¹³⁰),(ii)Fe²⁺分配到每个离子通道附近的三个活性部位(Asp¹²⁷),(iii)产物(双铁过氧)释放到 Fe³⁺O 成核通道(Ala²⁶),以及(iv)Fe³⁺O穿过亚基(Val⁴²、Thr¹⁴⁹)。铁蛋白生物矿化的合成取决于 H 亚基全长的残基,从 3 倍笼轴处的 Fe²⁺底物进入一端的笼,穿过活性部位和成核通道,到另一端的笼内,在 4 倍笼轴处。铁蛋白亚基-亚基的几何形状有助于矿物有序性,并解释了铁蛋白 H 和 L 亚基的生理影响。