Suppr超能文献

一种基于多变量经验模态分解的脑机接口特征提取方法

[A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition].

作者信息

Wang Jinjia, Liu Yuan

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2015 Apr;32(2):451-4, 464.

Abstract

This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

摘要

本文提出了一种基于多变量经验模态分解(MEMD)并结合功率谱特征的特征提取方法,该方法针对脑机接口(BCI)系统中的非平稳脑电图(EEG)或脑磁图(MEG)信号。首先,我们利用MEMD算法将多通道脑信号分解为一系列近似平稳且具有多尺度的多个固有模态函数(IMF)。然后,我们使用主成分分析(PCA)从每个IMF中提取功率特征并将其降维。最后,我们通过线性判别分析分类器对运动想象任务进行分类。实验验证表明,BCI竞赛III和竞赛IV的两类和四类任务的正确识别率分别达到92.0%和46.2%,优于BCI竞赛的获胜者。实验证明,所提出的方法合理有效且稳定,将为特征提取提供一种新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验