Pratihar S, Kim N, Kohale S C, Hase W L
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
Phys Chem Chem Phys. 2015 Oct 14;17(38):24576-86. doi: 10.1039/c5cp03214h.
Previous chemical dynamics simulations (Phys. Chem. Chem. Phys., 2014, 16, 23769-23778) were analyzed to delineate atomistic details for collision of N-protonated dialanine (ala2-H(+)) with a C8 perfluorinated self-assembled monolayer (F-SAM) surface. Initial collision energies Ei of 5-70 eV and incident angles θi of 0° and 45°, with the surface normal, were considered. Four trajectory types were identified: (1) direct scattering; (2) temporary sticking/physisorption on top of the surface; (3) temporary penetration of the surface with additional physisorption on the surface; and (4) trapping on/in the surface, by physisorption or surface penetration, when the trajectory is terminated. Direct scattering increases from 12 to 100% as Ei is increased from 5 to 70 eV. For the direct scattering at 70 eV, at least one ala2-H(+) heavy atom penetrated the surface for all of the trajectories. For ∼33% of the trajectories all eleven of the ala2-H(+) heavy atoms penetrated the F-SAM at the time of deepest penetration. The importance of trapping decreased with increase in Ei, decreasing from 84 to 0% with Ei increase from 5 to 70 eV at θi = 0°. Somewhat surprisingly, the collisional energy transfers to the F-SAM surface and ala2-H(+) are overall insensitive to the trajectory type. The energy transfer to ala2-H(+) is primarily to vibration, with the transfer to rotation ∼10% or less. Adsorption and then trapping of ala2-H(+) is primarily a multi-step process, and the following five trapping mechanisms were identified: (i) physisorption-penetration-physisorption (phys-pen-phys); (ii) penetration-physisorption-penetration (pen-phys-pen); (iii) penetration-physisorption (pen-phys); (iv) physisorption-penetration (phys-pen); and (v) only physisorption (phys). For Ei = 5 eV, the pen-phys-pen, pen-phys, phys-pen, and phys trapping mechanisms have similar probabilities. For 13.5 eV, the phys-pen mechanism, important at 5 eV, is unimportant. The radius of gyration of ala2-H(+) was calculated once it is trapped on/in the F-SAM surface and trapping decreases the ion's compactness, in part by breaking hydrogen bonds. The ala2-H(+) + F-SAM simulations are compared with the penetration and trapping dynamics found in previous simulations of projectile + organic surface collisions.
之前的化学动力学模拟(《物理化学化学物理》,2014年,第16卷,23769 - 23778页)被分析以描绘N - 质子化二丙氨酸(ala2 - H(+))与C8全氟自组装单分子层(F - SAM)表面碰撞的原子细节。考虑了初始碰撞能量Ei为5 - 70 eV以及与表面法线的入射角θi为0°和45°的情况。识别出四种轨迹类型:(1)直接散射;(2)在表面顶部的临时吸附/物理吸附;(3)表面的临时穿透以及在表面上的额外物理吸附;(4)当轨迹终止时,通过物理吸附或表面穿透在表面上/表面内捕获。随着Ei从5 eV增加到70 eV,直接散射从12%增加到100%。对于70 eV的直接散射,在所有轨迹中至少有一个ala2 - H(+)重原子穿透了表面。对于约33%的轨迹,在最深穿透时ala2 - H(+)的所有11个重原子都穿透了F - SAM。捕获的重要性随着Ei的增加而降低,在θi = 0°时,随着Ei从5 eV增加到70 eV,捕获的比例从84%降至0%。有点令人惊讶的是,碰撞能量转移到F - SAM表面和ala2 - H(+)总体上对轨迹类型不敏感。转移到ala2 - H(+)的能量主要用于振动,转移到转动的能量约为10%或更少。ala2 - H(+)的吸附然后捕获主要是一个多步过程,并且确定了以下五种捕获机制:(i)物理吸附 - 穿透 - 物理吸附(phys - pen - phys);(ii)穿透 - 物理吸附 - 穿透(pen - phys - pen);(iii)穿透 - 物理吸附(pen - phys);(iv)物理吸附 - 穿透(phys - pen);以及(v)仅物理吸附(phys)。对于Ei = 5 eV,pen - phys - pen、pen - phys、phys - pen和phys捕获机制具有相似的概率。对于13.5 eV,在5 eV时重要的phys - pen机制变得不重要。一旦ala2 - H(+)被困在F - SAM表面上/表面内,就计算其回转半径,并且捕获会部分地通过破坏氢键降低离子的紧密性。将ala2 - H(+) + F - SAM模拟与先前弹丸 + 有机表面碰撞模拟中发现的穿透和捕获动力学进行了比较。