Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303, CNRS-Université de Bourgogne Franche-Comté , 21078 Dijon, France.
Lebedev Physical Institute , Moscow, Russia.
Nano Lett. 2015 Sep 9;15(9):5811-8. doi: 10.1021/acs.nanolett.5b01861. Epub 2015 Aug 5.
Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.
纳米电子学和光子学是最有前途的研究领域之一,可为数据传输和信号处理提供功能纳米组件。通过采用基于金属的光学天线作为颠覆性的技术载体,我们证明这两种器件制造技术可以接口,创建一个电子驱动的自发射单元。这种纳米级等离子体发射器通过在接触式隧道天线馈电间隙中注入电子来工作。在某些工作条件下,我们表明天线进入了一个高度非线性的状态,其中发射光子的能量超过了施加偏压所施加的量子限制。我们提出了一个基于热电子自发发射的模型,该模型正确地再现了实验结果。这里描述的电子馈电光学天线是接口电子和光子的关键器件,从而能够为纳米级的芯片上无线信息广播开发光收发器。