Rosławska Anna, Merino Pablo, Grewal Abhishek, Leon Christopher C, Kuhnke Klaus, Kern Klaus
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany.
Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France.
Nano Lett. 2021 Sep 8;21(17):7221-7227. doi: 10.1021/acs.nanolett.1c02207. Epub 2021 Aug 24.
Optical spectromicroscopies, which can reach atomic resolution due to plasmonic enhancement, are perturbed by spontaneous intensity modifications. Here, we study such fluctuations in plasmonic electroluminescence at the single-atom limit profiting from the precision of a low-temperature scanning tunneling microscope. First, we investigate the influence of a controlled single-atom transfer from the tip to the sample on the plasmonic properties of the junction. Next, we form a well-defined atomic contact of several quanta of conductance. In contact, we observe changes of the electroluminescence intensity that can be assigned to spontaneous modifications of electronic conductance, plasmonic excitation, and optical antenna properties all originating from minute atomic rearrangements at or near the contact. Our observations are relevant for the understanding of processes leading to spontaneous intensity variations in plasmon-enhanced atomic-scale spectroscopies such as intensity blinking in picocavities.
由于等离子体增强而能够达到原子分辨率的光学光谱显微镜,会受到自发强度变化的干扰。在此,我们借助低温扫描隧道显微镜的精度,研究单原子极限下等离子体电致发光中的此类涨落。首先,我们研究从针尖到样品的受控单原子转移对结的等离子体特性的影响。接下来,我们形成具有几个电导量子的明确原子接触。在接触过程中,我们观察到电致发光强度的变化,这些变化可归因于电子电导、等离子体激发和光学天线特性的自发改变,所有这些都源于接触处或其附近的微小原子重排。我们的观察结果对于理解导致等离子体增强原子尺度光谱中自发强度变化的过程(如微腔中的强度闪烁)具有重要意义。