Deeb Claire, Toudert Johann, Pelouard Jean-Luc
Almae Technologies, Route de Nozay, 91460 Marcoussis, France.
Ensemble3 Centre of Excellence, Warsaw, Poland.
Nanophotonics. 2023 Jun 20;12(15):3029-3051. doi: 10.1515/nanoph-2023-0099. eCollection 2023 Jul.
The optical and electrical characteristics of electrically-driven nanogap antennas are extremely sensitive to the nanogap region where the fields are tightly confined and electrons and photons can interplay. Upon injecting electrons in the nanogap, a conductance channel opens between the metal surfaces modifying the plasmon charge distribution and therefore inducing an electrical tuning of the gap plasmon resonance. Electron tunneling across the nanogap can be harnessed to induce broadband photon emission with boosted quantum efficiency. Under certain conditions, the energy of the emitted photons exceeds the energy of electrons, and this overbias light emission is due to spontaneous emission of the hot electron distribution in the electrode. We conclude with the potential of electrically controlled nanogap antennas for faster on-chip communication.
电驱动纳米间隙天线的光学和电学特性对纳米间隙区域极为敏感,该区域电场被紧密限制,电子和光子能够相互作用。在纳米间隙中注入电子后,金属表面之间会打开一个电导通道,从而改变等离子体电荷分布,进而引起间隙等离子体共振的电学调谐。可以利用电子隧穿纳米间隙来诱导具有提高的量子效率的宽带光子发射。在某些条件下,发射光子的能量超过电子的能量,这种过偏置发光是由于电极中热电子分布的自发发射所致。我们最后总结了电控纳米间隙天线在更快的片上通信方面的潜力。