Suppr超能文献

自组织的生物力学网络驱动组织形态发生过程中的形状变化。

A self-organized biomechanical network drives shape changes during tissue morphogenesis.

机构信息

Aix Marseille Université, CNRS, IBDM UMR7288, 13009 Marseille, France.

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.

出版信息

Nature. 2015 Aug 20;524(7565):351-5. doi: 10.1038/nature14603. Epub 2015 Jul 27.

Abstract

Tissue morphogenesis is orchestrated by cell shape changes. Forces required to power these changes are generated by non-muscle myosin II (MyoII) motor proteins pulling filamentous actin (F-actin). Actomyosin networks undergo cycles of assembly and disassembly (pulses) to cause cell deformations alternating with steps of stabilization to result in irreversible shape changes. Although this ratchet-like behaviour operates in a variety of contexts, the underlying mechanisms remain unclear. Here we investigate the role of MyoII regulation through the conserved Rho1-Rok pathway during Drosophila melanogaster germband extension. This morphogenetic process is powered by cell intercalation, which involves the shrinkage of junctions in the dorsal-ventral axis (vertical junctions) followed by junction extension in the anterior-posterior axis. While polarized flows of medial-apical MyoII pulses deform vertical junctions, MyoII enrichment on these junctions (planar polarity) stabilizes them. We identify two critical properties of MyoII dynamics that underlie stability and pulsatility: exchange kinetics governed by phosphorylation-dephosphorylation cycles of the MyoII regulatory light chain; and advection due to contraction of the motors on F-actin networks. Spatial control over MyoII exchange kinetics establishes two stable regimes of high and low dissociation rates, resulting in MyoII planar polarity. Pulsatility emerges at intermediate dissociation rates, enabling convergent advection of MyoII and its upstream regulators Rho1 GTP, Rok and MyoII phosphatase. Notably, pulsatility is not an outcome of an upstream Rho1 pacemaker. Rather, it is a self-organized system that involves positive and negative biomechanical feedback between MyoII advection and dissociation rates.

摘要

组织形态发生是由细胞形状变化来调控的。产生这些变化所需的力是由非肌肉肌球蛋白 II(MyoII)运动蛋白拉动丝状肌动蛋白(F-actin)产生的。肌动球蛋白网络经历组装和拆卸(脉冲)的循环,以引起细胞变形,交替进行稳定步骤,导致不可逆的形状变化。尽管这种棘轮式行为在各种情况下都起作用,但潜在的机制仍不清楚。在这里,我们研究了在果蝇胚胎延伸过程中,通过保守的 Rho1-Rok 途径对 MyoII 调节的作用。这个形态发生过程是由细胞插入驱动的,涉及到背腹轴(垂直连接)的连接点收缩,然后是前后轴的连接点延伸。虽然中脊顶端的 MyoII 脉冲极化流使垂直连接变形,但这些连接上的 MyoII 富集(平面极性)使它们稳定。我们确定了 MyoII 动力学稳定性和脉冲性的两个关键特性:由 MyoII 调节轻链的磷酸化-去磷酸化循环控制的交换动力学;以及由于 F-actin 网络上的马达收缩引起的平流。MyoII 交换动力学的空间控制建立了高和低解离速率的两个稳定状态,导致 MyoII 平面极性。脉冲性出现在中间解离速率下,使 MyoII 和其上游调节剂 Rho1 GTP、Rok 和 MyoII 磷酸酶的趋同平流成为可能。值得注意的是,脉冲性不是上游 Rho1 节拍器的结果。相反,它是一个自组织系统,涉及到 MyoII 平流和解离速率之间的正反馈和负反馈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验