Suppr超能文献

通过细胞骨架网络中的机械敏感性和活性进行学习。

Learning via mechanosensitivity and activity in cytoskeletal networks.

作者信息

Banerjee Deb S, Falk Martin J, Gardel Margaret L, Walczak Aleksandra M, Mora Thierry, Vaikuntanathan Suriyanarayanan

机构信息

James Franck Institute, University of Chicago, Chicago, IL 60637.

Department of Physics, University of Chicago, Chicago, IL 60637.

出版信息

ArXiv. 2025 Apr 21:arXiv:2504.15107v1.

Abstract

In this work we show how a network inspired by a coarse-grained description of actomyosin cytoskeleton can learn - in a contrastive learning framework - from environmental perturbations if it is endowed with mechanosensitive proteins and motors. Our work is a proof of principle for how force-sensitive proteins and molecular motors can form the basis of a general strategy to learn in biological systems. Our work identifies a minimal biologically plausible learning mechanism and also explores its implications for commonly occuring phenomenolgy such as adaptation and homeostatis.

摘要

在这项工作中,我们展示了一个受肌动球蛋白细胞骨架粗粒度描述启发的网络,如果它配备了机械敏感蛋白和马达,如何在对比学习框架中从环境扰动中学习。我们的工作证明了力敏感蛋白和分子马达如何能够构成生物系统中一种通用学习策略的基础这一原理。我们的工作确定了一种最小的生物学上合理的学习机制,并探讨了其对适应和稳态等常见现象的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42b1/12045384/77e538ed999a/nihpp-2504.15107v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验