Banerjee Deb S, Falk Martin J, Gardel Margaret L, Walczak Aleksandra M, Mora Thierry, Vaikuntanathan Suriyanarayanan
James Franck Institute, University of Chicago, Chicago, IL 60637.
Department of Physics, University of Chicago, Chicago, IL 60637.
ArXiv. 2025 Apr 21:arXiv:2504.15107v1.
In this work we show how a network inspired by a coarse-grained description of actomyosin cytoskeleton can learn - in a contrastive learning framework - from environmental perturbations if it is endowed with mechanosensitive proteins and motors. Our work is a proof of principle for how force-sensitive proteins and molecular motors can form the basis of a general strategy to learn in biological systems. Our work identifies a minimal biologically plausible learning mechanism and also explores its implications for commonly occuring phenomenolgy such as adaptation and homeostatis.
在这项工作中,我们展示了一个受肌动球蛋白细胞骨架粗粒度描述启发的网络,如果它配备了机械敏感蛋白和马达,如何在对比学习框架中从环境扰动中学习。我们的工作证明了力敏感蛋白和分子马达如何能够构成生物系统中一种通用学习策略的基础这一原理。我们的工作确定了一种最小的生物学上合理的学习机制,并探讨了其对适应和稳态等常见现象的影响。