Suppr超能文献

具有已知小型哺乳动物密度的空间捕获-再捕获模型性能

Spatial capture-recapture model performance with known small-mammal densities.

作者信息

Gerber Brian D, Parmenter Robert R

出版信息

Ecol Appl. 2015 Apr;25(3):695-705. doi: 10.1890/14-0960.1.

Abstract

Abundance and density of wild animals are important ecological metrics. However, estimating either is fraught with challenges; spatial capture-recapture (SCR) models are a relatively new class of models that attempt to ameliorate common challenges, providing a statistically coherent framework to estimate abundance and density. SCR models are increasingly being used in ecological and conservation studies of mammals worldwide, but have received little testing with empirical field data. We use data collected via a web and grid sampling design to evaluate the basic SCR model where small-mammal abundance (N) and density (D) are known (via exhaustive sampling). We fit the basic SCR model with and without a behavioral effect to 11 small-mammal populations for each sampling design using a Bayesian and likelihood SCR modeling approach. We compare SCR and ad hoc density estimators using frequentist performance measures. We found Bayesian and likelihood SCR estimates of density (D) and abundance (N) to be similar. We also found SCR models to have moderately poor frequentist coverage of D and N (45-73%), high deviation from truth (i.e., accuracy; D, 17-29%; N, 16-29%), and consistent negative bias across inferential paradigms, sampling designs, and models. With the trapping grid data, the basic SCR model generally performed more poorly than the best ad hoc estimator (behavior CR super-population estimate divided by the full mean maximum distance moved estimate of the effective trapping area), whereas with the trapping web data, the best-performing SCR model (null) was comparable to the best distance model. Relatively poor frequentist SCR coverage resulted from higher precision (SCR coefficients of variation [CVs] < ad hoc CVs); however D and D were fairly well correlated (r2 range of 0.77-0.96). SCR's negative relative bias (i.e., average underestimation of the true density) suggests additional heterogeneity in detection and/or that small mammals maintained asymmetric home ranges. We suggest caution in the use of the basic SCR model when trapping animals in a sampling grid and more generally when small sample sizes necessitate the spatial scale parameter (σ) apply to all individuals. When possible, researchers should consider variation in detection and incorporate individual biological and/or ecological variation at the trap level when modeling σ.

摘要

野生动物的丰富度和密度是重要的生态指标。然而,对其中任何一个进行估计都充满挑战;空间捕获 - 重捕(SCR)模型是一类相对较新的模型,试图改善常见挑战,提供一个统计上连贯的框架来估计丰富度和密度。SCR模型在全球哺乳动物的生态和保护研究中越来越多地被使用,但很少用实地经验数据进行检验。我们使用通过网络和网格抽样设计收集的数据来评估基本SCR模型,其中小型哺乳动物的丰富度(N)和密度(D)是已知的(通过详尽抽样)。我们使用贝叶斯和似然SCR建模方法,对每种抽样设计的11个小型哺乳动物种群拟合有无行为效应的基本SCR模型。我们使用频率主义性能度量来比较SCR和临时密度估计器。我们发现贝叶斯和似然SCR对密度(D)和丰富度(N)的估计相似。我们还发现SCR模型对D和N的频率主义覆盖程度中等较差(45 - 73%),与真实值的偏差较大(即准确性;D为17 - 29%;N为16 - 29%),并且在不同的推理范式、抽样设计和模型中存在一致的负偏差。对于捕获网格数据,基本SCR模型通常比最佳临时估计器表现更差(行为CR超种群估计除以有效捕获区域的全平均最大移动距离估计),而对于捕获网络数据,表现最佳的SCR模型(无效应)与最佳距离模型相当。频率主义SCR覆盖程度相对较差是由于精度较高(SCR变异系数[CVs] < 临时CVs);然而D和D的相关性相当好(r2范围为0.77 - 0.96)。SCR的负相对偏差(即对真实密度的平均低估)表明在检测中存在额外的异质性和/或小型哺乳动物维持不对称的家域。我们建议在抽样网格中捕获动物时,以及更一般地当小样本量需要空间尺度参数(σ)应用于所有个体时,谨慎使用基本SCR模型。只要有可能,研究人员在对σ建模时应考虑检测中的变异,并纳入陷阱层面的个体生物学和/或生态变异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验