Eom Youngsub, Rhim Jay Won, Kang Su-Yeon, Kim Seong-Woo, Song Jong Suk, Kim Hyo Myung
Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea.
Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea.
Am J Ophthalmol. 2015 Oct;160(4):717-24.e2. doi: 10.1016/j.ajo.2015.07.011. Epub 2015 Jul 26.
To evaluate the accuracy of toric intraocular lens (IOL) calculation using estimated total corneal astigmatism based on the anterior-to-posterior corneal cylinder power ratio according to the axis orientation of anterior corneal astigmatism.
Retrospective cross-sectional study.
Nine hundred twenty-eight eyes of 928 reference subjects and 20 cataract patients (20 eyes) implanted with a toric IOL were enrolled. Linear regression analysis parameters (β0 and β1) of relationship between the simulated keratometry cylinder (CylSimK) and posterior corneal cylinder power of reference subjects were used to calculate the estimated posterior corneal astigmatism (-[β1 × CylSimK + β0] @ 90). When regression analysis was not significant, estimated posterior corneal astigmatism was defined as the negative value of the mean posterior corneal cylinder power @ 90. Estimated total corneal astigmatism was defined as the vectorial sum of anterior corneal astigmatism and estimated posterior corneal astigmatism. Residual astigmatism error, predicted using SimK, was compared with that predicted using estimated total corneal astigmatism.
Estimated posterior corneal astigmatism was determined to be -(0.15 × CylSimK + 0.22) @ 90 in eyes with with-the-rule astigmatism, -(0.05 × CylSimK + 0.27) @ 90 in oblique astigmatism, and -0.27 @ 90 in against-the-rule astigmatism. The median magnitude of the predicted residual astigmatism error calculated using estimated total corneal astigmatism (0.30 cylinder diopters) was significantly smaller than that calculated with SimK (0.50 cylinder diopters).
Toric IOL calculations using estimated total corneal astigmatism based on the anterior-to-posterior corneal cylinder power ratio provided a more appropriate toric IOL cylinder power than calculations using SimK astigmatism.
根据前角膜散光的轴位方向,利用基于前后角膜柱镜屈光力比值的估计总角膜散光来评估散光型人工晶状体(IOL)计算的准确性。
回顾性横断面研究。
纳入928名参考受试者的928只眼以及20例植入散光型IOL的白内障患者(20只眼)。参考受试者模拟角膜曲率计柱镜(CylSimK)与后角膜柱镜屈光力之间关系的线性回归分析参数(β0和β1)用于计算估计的后角膜散光(-[β1×CylSimK + β0] @ 90)。当回归分析不显著时,估计的后角膜散光定义为90°方向后角膜柱镜平均屈光力的负值。估计的总角膜散光定义为前角膜散光与估计的后角膜散光的矢量和。将使用SimK预测的残余散光误差与使用估计的总角膜散光预测的残余散光误差进行比较。
顺规散光眼的估计后角膜散光确定为-(0.15×CylSimK + 0.22) @ 90,斜向散光眼为-(0.05×CylSimK + 0.27) @ 90,逆规散光眼为-0.27 @ 90。使用估计的总角膜散光计算的预测残余散光误差的中位数大小(0.30柱镜度)显著小于使用SimK计算的(0.50柱镜度)。
与使用SimK散光进行计算相比,基于前后角膜柱镜屈光力比值的估计总角膜散光进行散光型IOL计算可提供更合适的散光型IOL柱镜屈光力。