Suppr超能文献

凝聚态物质瞬态的光学纳米显微镜技术

Optical nanoscopy of transient states in condensed matter.

作者信息

Kuschewski F, Kehr S C, Green B, Bauer Ch, Gensch M, Eng L M

机构信息

Institute of Applied Physics, Technische Universität Dresden, Dresden, Germany.

Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

出版信息

Sci Rep. 2015 Jul 28;5:12582. doi: 10.1038/srep12582.

Abstract

Recently, the fundamental and nanoscale understanding of complex phenomena in materials research and the life sciences, witnessed considerable progress. However, elucidating the underlying mechanisms, governed by entangled degrees of freedom such as lattice, spin, orbit, and charge for solids or conformation, electric potentials, and ligands for proteins, has remained challenging. Techniques that allow for distinguishing between different contributions to these processes are hence urgently required. In this paper we demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) as a novel type of nano-probe for tracking transient states of matter. We introduce a sideband-demodulation technique that allows for probing exclusively the stimuli-induced change of near-field optical properties. We exemplify this development by inspecting the decay of an electron-hole plasma generated in SiGe thin films through near-infrared laser pulses. Our approach can universally be applied to optically track ultrafast/-slow processes over the whole spectral range from UV to THz frequencies.

摘要

最近,材料研究和生命科学中复杂现象的基础和纳米尺度理解取得了显著进展。然而,阐明由诸如固体的晶格、自旋、轨道和电荷或蛋白质的构象、电势和配体等纠缠自由度所支配的潜在机制仍然具有挑战性。因此,迫切需要能够区分这些过程中不同贡献的技术。在本文中,我们展示了散射型扫描近场光学显微镜(s-SNOM)作为一种用于跟踪物质瞬态的新型纳米探针的应用。我们引入了一种边带解调技术,该技术允许专门探测刺激引起的近场光学性质的变化。我们通过检查近红外激光脉冲在SiGe薄膜中产生的电子-空穴等离子体的衰减来举例说明这一进展。我们的方法可以普遍应用于在从紫外到太赫兹频率的整个光谱范围内光学跟踪超快/慢过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2cc/4648477/746a10d034a0/srep12582-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验