Suppr超能文献

用于蛋白质翻译后修饰高通量分析的计算和统计方法。

Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins.

作者信息

Schwämmle Veit, Verano-Braga Thiago, Roepstorff Peter

机构信息

Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.

Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

出版信息

J Proteomics. 2015 Nov 3;129:3-15. doi: 10.1016/j.jprot.2015.07.016. Epub 2015 Jul 26.

Abstract

The investigation of post-translational modifications (PTMs) represents one of the main research focuses for the study of protein function and cell signaling. Mass spectrometry instrumentation with increasing sensitivity improved protocols for PTM enrichment and recently established pipelines for high-throughput experiments allow large-scale identification and quantification of several PTM types. This review addresses the concurrently emerging challenges for the computational analysis of the resulting data and presents PTM-centered approaches for spectra identification, statistical analysis, multivariate analysis and data interpretation. We furthermore discuss the potential of future developments that will help to gain deep insight into the PTM-ome and its biological role in cells. This article is part of a Special Issue entitled: Computational Proteomics.

摘要

翻译后修饰(PTM)的研究是蛋白质功能和细胞信号传导研究的主要重点之一。灵敏度不断提高的质谱仪器改进了PTM富集方案,最近建立的高通量实验流程允许对多种PTM类型进行大规模鉴定和定量。本综述阐述了对所得数据进行计算分析时同时出现的挑战,并介绍了以PTM为中心的光谱鉴定、统计分析、多变量分析和数据解释方法。我们还讨论了未来发展的潜力,这将有助于深入了解PTM组及其在细胞中的生物学作用。本文是名为“计算蛋白质组学”的特刊的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验