Suppr超能文献

结核分枝杆菌中乙酸盐的异化和同化取决于碳的可利用性。

Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability.

作者信息

Rücker Nadine, Billig Sandra, Bücker René, Jahn Dieter, Wittmann Christoph, Bange Franz-Christoph

机构信息

Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.

Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.

出版信息

J Bacteriol. 2015 Oct;197(19):3182-90. doi: 10.1128/JB.00259-15. Epub 2015 Jul 27.

Abstract

UNLABELLED

Mycobacterium tuberculosis persists inside granulomas in the human lung. Analysis of the metabolic composition of granulomas from guinea pigs revealed that one of the organic acids accumulating in the course of infection is acetate (B. S. Somashekar, A. G. Amin, C. D. Rithner, J. Troudt, R. Basaraba, A. Izzo, D. C. Crick, and D. Chatterjee, J Proteome Res 10:4186-4195, 2011, doi:http://dx.doi.org/10.1021/pr2003352), which might result either from metabolism of the pathogen or might be provided by the host itself. Our studies characterize a metabolic pathway by which M. tuberculosis generates acetate in the cause of fatty acid catabolism. The acetate formation depends on the enzymatic activities of Pta and AckA. Using actyl coenzyme A (acetyl-CoA) as a substrate, acetyl-phosphate is generated and finally dephosphorylated to acetate, which is secreted into the medium. Knockout mutants lacking either the pta or ackA gene showed significantly reduced acetate production when grown on fatty acids. This effect is even more pronounced when the glyoxylate shunt is blocked, resulting in higher acetate levels released to the medium. The secretion of acetate was followed by an assimilation of the metabolite when other carbon substrates became limiting. Our data indicate that during acetate assimilation, the Pta-AckA pathway acts in concert with another enzymatic reaction, namely, the acetyl-CoA synthetase (Acs) reaction. Thus, acetate metabolism might possess a dual function, mediating an overflow reaction to release excess carbon units and resumption of acetate as a carbon substrate.

IMPORTANCE

During infection, host-derived lipid components present the major carbon source at the infection site. β-Oxidation of fatty acids results in the formation of acetyl-CoA. In this study, we demonstrate that consumption of fatty acids by Mycobacterium tuberculosis activates an overflow mechanism, causing the pathogen to release excess carbon intermediates as acetate. The Pta-AckA pathway mediating acetate formation proved to be reversible, enabling M. tuberculosis to reutilize the previously secreted acetate as a carbon substrate for metabolism.

摘要

未标记

结核分枝杆菌在人肺部的肉芽肿内持续存在。对豚鼠肉芽肿的代谢成分分析表明,感染过程中积累的有机酸之一是乙酸盐(B.S.索马谢卡尔、A.G.阿明、C.D.里特纳、J.特劳特、R.巴萨拉巴、A.伊佐、D.C.克里克和D.查特吉,《蛋白质组研究杂志》10:4186 - 4195,2011年,doi:http://dx.doi.org/10.1021/pr2003352),这可能是病原体代谢的结果,也可能由宿主自身提供。我们的研究描述了结核分枝杆菌在脂肪酸分解代谢过程中产生乙酸盐的一条代谢途径。乙酸盐的形成取决于磷酸转乙酰酶(Pta)和乙酸激酶(AckA)的酶活性。以乙酰辅酶A(acetyl - CoA)为底物,生成乙酰磷酸,最终脱磷酸形成乙酸盐,分泌到培养基中。缺乏pta或ackA基因的敲除突变体在以脂肪酸为碳源生长时,乙酸盐产量显著降低。当乙醛酸循环受阻时,这种影响更为明显,导致释放到培养基中的乙酸盐水平升高。乙酸盐分泌后,当其他碳底物受限时代谢物会被同化。我们的数据表明,在乙酸盐同化过程中,Pta - AckA途径与另一种酶促反应,即乙酰辅酶A合成酶(Acs)反应协同作用。因此,乙酸盐代谢可能具有双重功能,介导一种溢流反应以释放多余的碳单位,并将乙酸盐重新用作碳底物。

重要性

在感染期间,宿主来源的脂质成分是感染部位的主要碳源。脂肪酸的β - 氧化导致乙酰辅酶A的形成。在本研究中,我们证明结核分枝杆菌消耗脂肪酸会激活一种溢流机制,使病原体将多余的碳中间体以乙酸盐的形式释放出来。介导乙酸盐形成的Pta - AckA途径被证明是可逆的,使结核分枝杆菌能够将先前分泌的乙酸盐重新用作代谢的碳底物。

相似文献

引用本文的文献

9
First Observation of an Acetate Switch in a Methanogenic Autotroph ( S2).产甲烷自养菌(S2)中乙酸盐转换的首次观察
Microbiol Insights. 2020 Jul 31;13:1178636120945300. doi: 10.1177/1178636120945300. eCollection 2020.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验