Suppr超能文献

Pta-AckA途径的失活会损害在溢流代谢期间的适应性。

Inactivation of the Pta-AckA pathway impairs fitness of during overflow metabolism.

作者信息

Won Harim I, Watson Sean M, Ahn Jong-Sam, Endres Jennifer L, Bayles Kenneth W, Sadykov Marat R

机构信息

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA

出版信息

J Bacteriol. 2021 May 1;203(9). doi: 10.1128/JB.00660-20. Epub 2021 Feb 16.

Abstract

Under conditions of glucose excess, aerobically growing bacteria predominantly direct carbon flux towards acetate fermentation, a phenomenon known as overflow metabolism or the bacterial 'Crabtree effect'. Numerous studies of the major acetate-generating pathway, the Pta-AckA, revealed its important role in bacterial fitness through the control of central metabolism to sustain balanced growth and cellular homeostasis. In this work, we highlight the contribution of the Pta-AckA pathway to fitness of the spore-forming bacterium, We demonstrate that disruption of the Pta-AckA pathway causes a drastic growth reduction in the mutants and alters the metabolic and energy status of the cells. Our results revealed that inactivation of the Pta-AckA pathway increases the glucose consumption rate, affects intracellular ATP, NAD and NADH levels and leads to a metabolic block at the pyruvate and acetyl-CoA nodes. Consequently, accumulation of intracellular acetyl-CoA and pyruvate forces bacteria to direct carbon into the TCA and/or glyoxylate cycles as well as fatty acid and poly(3-hydroxybutyrate) (PHB) biosynthesis pathways. Notably, the presence of phosphate butyryltransferase in partially compensates for the loss of phosphotransacetylase activity. Furthermore, overexpression of the gene not only eliminates the negative impact of the mutation on fitness, but also restores normal growth in the mutant of the non-butyrate-producing bacterium, Taken together, the results of this study demonstrate the importance of the Pta-AckA pathway for fitness by revealing its critical contribution to the maintenance of metabolic homeostasis during aerobic growth under conditions of carbon overflow. , the etiologic agent of anthrax, is a highly pathogenic, spore-forming bacterium that causes acute, life-threatening disease in both humans and livestock. A greater understanding of the metabolic determinants governing fitness of is essential for the development of successful therapeutic and vaccination strategies aimed at lessening the potential impact of this important biodefense pathogen. This study is the first to demonstrate the vital role of the Pta-AckA pathway in preserving energy and metabolic homeostasis in under conditions of carbon overflow, therefore, highlighting this pathway as a potential therapeutic target for drug discovery. Overall, the results of this study provide important insight into understanding the metabolic processes and requirements driving rapid proliferation during vegetative growth.

摘要

在葡萄糖过量的条件下,需氧生长的细菌主要将碳通量导向乙酸发酵,这种现象被称为溢流代谢或细菌的“克奈特效应”。对主要的乙酸生成途径Pta - AckA的大量研究表明,它通过控制中心代谢以维持平衡生长和细胞内稳态,在细菌适应性方面发挥着重要作用。在这项工作中,我们强调了Pta - AckA途径对产芽孢细菌适应性的贡献。我们证明,Pta - AckA途径的破坏会导致突变体的生长急剧减少,并改变细胞的代谢和能量状态。我们的结果表明,Pta - AckA途径的失活会提高葡萄糖消耗率,影响细胞内ATP、NAD和NADH水平,并导致丙酮酸和乙酰辅酶A节点处的代谢阻滞。因此,细胞内乙酰辅酶A和丙酮酸的积累迫使细菌将碳导向三羧酸循环和/或乙醛酸循环以及脂肪酸和聚(3 - 羟基丁酸酯)(PHB)生物合成途径。值得注意的是,[细菌名称]中磷酸丁酰转移酶的存在部分补偿了磷酸转乙酰酶活性的丧失。此外,[基因名称]基因的过表达不仅消除了[突变名称]突变对[细菌名称]适应性的负面影响,还恢复了非丁酸产生菌[细菌名称]突变体的正常生长。综上所述,本研究结果通过揭示Pta - AckA途径在碳溢流条件下需氧生长期间对维持代谢稳态的关键贡献,证明了其对[细菌名称]适应性的重要性。[细菌名称]是炭疽的病原体,是一种高度致病的产芽孢细菌,可在人类和牲畜中引起急性、危及生命的疾病。深入了解控制[细菌名称]适应性的代谢决定因素对于制定旨在减轻这种重要生物防御病原体潜在影响的成功治疗和疫苗接种策略至关重要。本研究首次证明了Pta - AckA途径在碳溢流条件下[细菌名称]中维持能量和代谢稳态的关键作用,因此,突出了该途径作为药物发现潜在治疗靶点的地位。总体而言,本研究结果为理解营养生长期间驱动[细菌名称]快速增殖的代谢过程和需求提供了重要见解。

相似文献

1
Inactivation of the Pta-AckA pathway impairs fitness of during overflow metabolism.
J Bacteriol. 2021 May 1;203(9). doi: 10.1128/JB.00660-20. Epub 2021 Feb 16.
2
Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus.
J Bacteriol. 2013 Jul;195(13):3035-44. doi: 10.1128/JB.00042-13. Epub 2013 Apr 26.
3
Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus.
J Proteome Res. 2016 Apr 1;15(4):1205-12. doi: 10.1021/acs.jproteome.5b01089. Epub 2016 Mar 24.
4
The Impact of , and Mutations on Growth, Gene Expression and Protein Acetylation in K-12.
Front Microbiol. 2020 Feb 21;11:233. doi: 10.3389/fmicb.2020.00233. eCollection 2020.
6
CcpA and CodY Coordinate Acetate Metabolism in Streptococcus mutans.
Appl Environ Microbiol. 2017 Mar 17;83(7). doi: 10.1128/AEM.03274-16. Print 2017 Apr 1.
9
Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability.
J Bacteriol. 2015 Oct;197(19):3182-90. doi: 10.1128/JB.00259-15. Epub 2015 Jul 27.

引用本文的文献

1
Unveiling the role of the PhoP master regulator in arsenite resistance through downregulation in .
Curr Res Microb Sci. 2025 Feb 5;8:100357. doi: 10.1016/j.crmicr.2025.100357. eCollection 2025.
2
Enhancing aerobic composting of food waste by adding hydrolytically active microorganisms.
Front Microbiol. 2024 Dec 2;15:1487165. doi: 10.3389/fmicb.2024.1487165. eCollection 2024.
3
The crosstalk between microbiota and metabolites in AP mice: an analysis based on metagenomics and untargeted metabolomics.
Front Cell Infect Microbiol. 2023 Aug 9;13:1134321. doi: 10.3389/fcimb.2023.1134321. eCollection 2023.
4
Short-Chain Fatty Acid and FFAR2 Activation - A New Option for Treating Infections?
Front Cell Infect Microbiol. 2021 Dec 2;11:785833. doi: 10.3389/fcimb.2021.785833. eCollection 2021.

本文引用的文献

1
The Impact of , and Mutations on Growth, Gene Expression and Protein Acetylation in K-12.
Front Microbiol. 2020 Feb 21;11:233. doi: 10.3389/fmicb.2020.00233. eCollection 2020.
2
Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis.
Cell Syst. 2017 Aug 23;5(2):95-104. doi: 10.1016/j.cels.2017.06.005. Epub 2017 Jul 26.
4
Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond.
Appl Microbiol Biotechnol. 2016 Nov;100(21):8985-9001. doi: 10.1007/s00253-016-7832-x. Epub 2016 Sep 20.
6
Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus.
J Proteome Res. 2016 Apr 1;15(4):1205-12. doi: 10.1021/acs.jproteome.5b01089. Epub 2016 Mar 24.
7
Overflow metabolism in Escherichia coli results from efficient proteome allocation.
Nature. 2015 Dec 3;528(7580):99-104. doi: 10.1038/nature15765.
8
Anaerobic Formate and Hydrogen Metabolism.
EcoSal Plus. 2004 Dec;1(1). doi: 10.1128/ecosalplus.3.5.4.
9
Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability.
J Bacteriol. 2015 Oct;197(19):3182-90. doi: 10.1128/JB.00259-15. Epub 2015 Jul 27.
10
Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans.
Appl Environ Microbiol. 2015 Aug;81(15):5015-25. doi: 10.1128/AEM.01160-15. Epub 2015 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验