Suppr超能文献

利用宏基因组组装理解微生物群落中的挑战与机遇(附IPython Notebook教程)

Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial).

作者信息

Howe Adina, Chain Patrick S G

机构信息

GERMS Laboratory, Department of Agricultural and Biosystems Engineering, Iowa State University , Ames, IA, USA.

Bioinformatics and Analytics Team, Bioscience Division, Los Alamos National Laboratory , Los Alamos, NM, USA.

出版信息

Front Microbiol. 2015 Jul 9;6:678. doi: 10.3389/fmicb.2015.00678. eCollection 2015.

Abstract

Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs), providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats While numerous tools have been developed based on these methodological concepts, they present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow.

摘要

宏基因组学研究在揭示环境微生物的遗传学、生理学和生态学方面具有巨大潜力。宏基因组分析目前面临的挑战与我们将测序读数、其来源群体及其编码功能联系起来的能力有关。基于组装的方法通过将重叠读数扩展为更大的连续序列(重叠群)来减小数据集大小,为不依赖现有参考的遗传序列提供上下文信息。然而,这些方法往往计算量很大,并且再次受到测序错误以及基因组重复的挑战。虽然已经基于这些方法概念开发了许多工具,但它们给宏基因组学研究人员带来了令人困惑的选择和培训要求。为了帮助更便捷地使用组装工具,本综述还包括一个IPython Notebook宏基因组组装教程。本教程有在使用亚马逊弹性云计算的任何操作系统上执行的说明,并指导用户完成下载、组装以及将读数映射到模拟微生物群落宏基因组的重叠群的过程。尽管存在挑战,但宏基因组分析已经揭示了对地球上许多环境的新见解。随着软件、培训和数据不断涌现,宏基因组数据的获取及其发现将会不断增加。

相似文献

3
Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
Front Bioeng Biotechnol. 2015 Sep 17;3:141. doi: 10.3389/fbioe.2015.00141. eCollection 2015.
4
Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes.
mSystems. 2016 Jun 28;1(3). doi: 10.1128/mSystems.00045-16. eCollection 2016 May-Jun.
5
MetaCAA: A clustering-aided methodology for efficient assembly of metagenomic datasets.
Genomics. 2014 Feb-Mar;103(2-3):161-8. doi: 10.1016/j.ygeno.2014.02.007. Epub 2014 Mar 5.
6
Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation.
Microbiome. 2014 Oct 28;2:39. doi: 10.1186/2049-2618-2-39. eCollection 2014.
7
Kelpie: generating full-length 'amplicons' from whole-metagenome datasets.
PeerJ. 2019 Jan 30;6:e6174. doi: 10.7717/peerj.6174. eCollection 2019.
8
COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets.
PLoS One. 2015 Nov 11;10(11):e0142102. doi: 10.1371/journal.pone.0142102. eCollection 2015.
9
BIGMAC : breaking inaccurate genomes and merging assembled contigs for long read metagenomic assembly.
BMC Bioinformatics. 2016 Oct 28;17(1):435. doi: 10.1186/s12859-016-1288-y.
10
Estimating the composition of species in metagenomes by clustering of next-generation read sequences.
Methods. 2014 Oct 1;69(3):213-9. doi: 10.1016/j.ymeth.2014.07.009. Epub 2014 Jul 27.

引用本文的文献

3
Step-by-Step Metagenomics for Food Microbiome Analysis: A Detailed Review.
Foods. 2024 Jul 14;13(14):2216. doi: 10.3390/foods13142216.
4
A survey of k-mer methods and applications in bioinformatics.
Comput Struct Biotechnol J. 2024 May 21;23:2289-2303. doi: 10.1016/j.csbj.2024.05.025. eCollection 2024 Dec.
5
A Bacterial Genome and Culture Collection of Gut Microbial in Weanling Piglet.
Microbiol Spectr. 2022 Feb 23;10(1):e0241721. doi: 10.1128/spectrum.02417-21. Epub 2022 Feb 16.
6
Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome.
Nat Commun. 2021 Feb 17;12(1):1106. doi: 10.1038/s41467-021-21295-0.
7
Baseline human gut microbiota profile in healthy people and standard reporting template.
PLoS One. 2019 Sep 11;14(9):e0206484. doi: 10.1371/journal.pone.0206484. eCollection 2019.
8
Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes.
Curr Microbiol. 2020 Apr;77(4):645-656. doi: 10.1007/s00284-019-01698-5. Epub 2019 May 8.
9
A new statistic for efficient detection of repetitive sequences.
Bioinformatics. 2019 Nov 1;35(22):4596-4606. doi: 10.1093/bioinformatics/btz262.
10
Comparative Metagenomics Provides Insight Into the Ecosystem Functioning of the Shark Bay Stromatolites, Western Australia.
Front Microbiol. 2018 Jun 25;9:1359. doi: 10.3389/fmicb.2018.01359. eCollection 2018.

本文引用的文献

1
Accurate read-based metagenome characterization using a hierarchical suite of unique signatures.
Nucleic Acids Res. 2015 May 26;43(10):e69. doi: 10.1093/nar/gkv180. Epub 2015 Mar 12.
2
MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph.
Bioinformatics. 2015 May 15;31(10):1674-6. doi: 10.1093/bioinformatics/btv033. Epub 2015 Jan 20.
3
Transcriptome characteristics of filamentous fungi deduced using high-throughput analytical technologies.
Brief Funct Genomics. 2014 Nov;13(6):440-50. doi: 10.1093/bfgp/elu033. Epub 2014 Sep 11.
4
An introduction to the analysis of shotgun metagenomic data.
Front Plant Sci. 2014 Jun 16;5:209. doi: 10.3389/fpls.2014.00209. eCollection 2014.
5
Automated ensemble assembly and validation of microbial genomes.
BMC Bioinformatics. 2014 May 3;15:126. doi: 10.1186/1471-2105-15-126.
6
Tackling soil diversity with the assembly of large, complex metagenomes.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4904-9. doi: 10.1073/pnas.1402564111. Epub 2014 Mar 14.
8
Kraken: ultrafast metagenomic sequence classification using exact alignments.
Genome Biol. 2014 Mar 3;15(3):R46. doi: 10.1186/gb-2014-15-3-r46.
9
Sequencing depth and coverage: key considerations in genomic analyses.
Nat Rev Genet. 2014 Feb;15(2):121-32. doi: 10.1038/nrg3642.
10
Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots.
Front Genet. 2013 Nov 29;4:237. doi: 10.3389/fgene.2013.00237. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验