Suppr超能文献

海洋放线菌中新生物活性化合物的发现和开发中的宏基因组学方法。

Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes.

机构信息

Centre for Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamilnadu, India.

Department of Biotechnology and Biomedical Engineering, National Institute of Technology, Rourkela, Odisha, India.

出版信息

Curr Microbiol. 2020 Apr;77(4):645-656. doi: 10.1007/s00284-019-01698-5. Epub 2019 May 8.

Abstract

Marine actinomycetes are prolific sources of marine drug discovery system contributing for several bioactive compounds of biomedical prominence. Metagenomics, a culture-independent technique through its sequence- and function-based screening has led to the discovery and synthesis of numerous biologically significant compounds like polyketide synthase, Non-ribosomal peptide synthetase, antibiotics, and biocatalyst. While metagenomics offers different advantages over conventional sequencing techniques, they also have certain limitations including bias classification, non-availability of quality DNA samples, heterologous expression, and host selection. The assimilation of advanced amplification and screening methods such as φ29 DNA polymerase, Next-Generation Sequencing, Cosmids, and recent bioinformatics tools like automated genome mining, anti-SMASH have shown promising results to overcome these constrains. Consequently, functional genomics and bioinformatics along with synthetic biology will be crucial for the success of the metagenomic approach and indeed for exploring new possibilities among the microbial consortia for the future drug discovery process.

摘要

海洋放线菌是海洋药物发现系统的丰富来源,为许多具有生物医学重要性的生物活性化合物做出了贡献。宏基因组学是一种不依赖于培养的技术,通过序列和功能筛选,已经发现和合成了许多具有生物意义的化合物,如聚酮合酶、非核糖体肽合酶、抗生素和生物催化剂。虽然宏基因组学相对于传统测序技术具有许多优势,但也存在一定的局限性,包括分类偏差、缺乏高质量的 DNA 样本、异源表达和宿主选择。先进的扩增和筛选方法的结合,如 φ29 DNA 聚合酶、下一代测序、Cosmids 以及最近的生物信息学工具,如自动基因组挖掘、anti-SMASH,已经显示出有希望的结果,可以克服这些限制。因此,功能基因组学和生物信息学以及合成生物学对于宏基因组学方法的成功以及探索微生物群落中未来药物发现过程的新可能性至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验