Suppr超能文献

方法比较分析中最小二乘回归系数错误

Incorrect least-squares regression coefficients in method-comparison analysis.

作者信息

Cornbleet P J, Gochman N

出版信息

Clin Chem. 1979 Mar;25(3):432-8.

PMID:262186
Abstract

The least-squares method is frequently used to calculate the slope and intercept of the best line through a set of data points. However, least-squares regression slopes and intercepts may be incorrect if the underlying assumptions of the least-squares model are not met. Two factors in particular that may result in incorrect least-squares regression coefficients are: (a) imprecision in the measurement of the independent (x-axis) variable and (b) inclusion of outliers in the data analysis. We compared the methods of Deming, Mandel, and Bartlett in estimating the known slope of a regression line when the independent variable is measured with imprecision, and found the method of Deming to be the most useful. Significant error in the least-squares slope estimation occurs when the ratio of the standard deviation of measurement of a single x value to the standard deviation of the x-data set exceeds 0.2. Errors in the least-squares coefficients attributable to outliers can be avoided by eliminating data points whose vertical distance from the regression line exceed four times the standard error the estimate.

摘要

最小二乘法经常用于通过一组数据点计算最佳拟合线的斜率和截距。然而,如果最小二乘模型的基本假设不成立,最小二乘回归的斜率和截距可能会不正确。特别是有两个因素可能导致最小二乘回归系数不正确:(a)自变量(x轴)测量的不精确性,以及(b)数据分析中包含异常值。当自变量测量不精确时,我们比较了戴明法、曼德尔法和巴特利特法在估计回归线已知斜率方面的效果,发现戴明法最为有用。当单个x值测量的标准差与x数据集的标准差之比超过0.2时,最小二乘斜率估计会出现显著误差。通过剔除那些与回归线的垂直距离超过估计标准误差四倍的数据点,可以避免因异常值导致的最小二乘系数误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验