Suppr超能文献

将直线拟合到实验数据。

Fitting straight lines to experimental data.

作者信息

Brace R A

出版信息

Am J Physiol. 1977 Sep;233(3):R94-9. doi: 10.1152/ajpregu.1977.233.3.R94.

Abstract

The problem associated with use of statistical methods for determining a best linear relationship of the form Y = AX +B have been examined for a condition quite prevalent with experimental research, i.e., when the values of both variables are subject to essentially unknown errors. Under this condition standard least-squares regression analysis underestimates the value of the slope A. A very simple method for determining the best value of the slope and intercept has been introduced which can be used when errors are present in both variables. With this proposed method, the calculated slope is equal to the standard error of Y divided by the standard error of X (with the appropriate sign) and the intercept is found from the mean values of X and Y, i.e., B = Y - AX. The best estimate of the slope is also equal to the slope found with the conventional regression method divided by the absolute value of the correlation coefficient. The line determined with the suggested method can be considered to be a line of symmetry through the data.

摘要

对于实验研究中相当普遍的一种情况,即当两个变量的值都受到基本未知误差影响时,与使用统计方法确定形如Y = AX + B的最佳线性关系相关的问题已得到研究。在这种情况下,标准最小二乘回归分析会低估斜率A的值。本文介绍了一种非常简单的方法来确定斜率和截距的最佳值,该方法可在两个变量都存在误差时使用。使用此方法,计算出的斜率等于Y的标准误差除以X的标准误差(带适当符号),截距可从X和Y的平均值得出,即B = Y - AX。斜率的最佳估计值也等于用传统回归方法得出的斜率除以相关系数的绝对值。用该方法确定的直线可被视为穿过数据的对称线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验