Suppr超能文献

Sampling from Determinantal Point Processes for Scalable Manifold Learning.

作者信息

Wachinger Christian, Golland Polina

出版信息

Inf Process Med Imaging. 2015;24:687-98. doi: 10.1007/978-3-319-19992-4_54.

Abstract

High computational costs of manifold learning prohibit its application for large datasets. A common strategy to overcome this problem is to perform dimensionality reduction on selected landmarks and to successively embed the entire dataset with the Nyström method. The two main challenges that arise are: (i) the landmarks selected in non-Euclidean geometries must result in a low reconstruction error, (ii) the graph constructed from sparsely sampled landmarks must approximate the manifold well. We propose to sample the landmarks from determinantal distributions on non-Euclidean spaces. Since current determinantal sampling algorithms have the same complexity as those for manifold learning, we present an efficient approximation with linear complexity. Further, we recover the local geometry after the sparsification by assigning each landmark a local covariance matrix, estimated from the original point set. The resulting neighborhood selection .based on the Bhattacharyya distance improves the embedding of sparsely sampled manifolds. Our experiments show a significant performance improvement compared to state-of-the-art landmark selection techniques on synthetic and medical data.

摘要

相似文献

1
Sampling from Determinantal Point Processes for Scalable Manifold Learning.
Inf Process Med Imaging. 2015;24:687-98. doi: 10.1007/978-3-319-19992-4_54.
2
Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
Med Image Anal. 2014 Apr;18(3):487-99. doi: 10.1016/j.media.2014.01.002. Epub 2014 Feb 5.
3
Model-based segmentation using graph representations.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):393-400. doi: 10.1007/978-3-540-85988-8_47.
4
Weights and topology: a study of the effects of graph construction on 3D image segmentation.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):153-61. doi: 10.1007/978-3-540-85988-8_19.
5
Landmark correspondence optimization for coupled surfaces.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):818-25. doi: 10.1007/978-3-540-75759-7_99.
6
Ray-tracing based registration for HRCT images of the lungs.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):670-7.
7
Left ventricle segmentation using diffusion wavelets and boosting.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):919-26. doi: 10.1007/978-3-642-04271-3_111.
8
Bayesian tracking of elongated structures in 3D images.
Inf Process Med Imaging. 2007;20:74-85. doi: 10.1007/978-3-540-73273-0_7.
9
Transitive inverse-consistent manifold registration.
Inf Process Med Imaging. 2005;19:468-79. doi: 10.1007/11505730_39.
10
Deformable registration of 4D computed tomography data.
Med Phys. 2006 Nov;33(11):4423-30. doi: 10.1118/1.2361077.

本文引用的文献

1
Parallel spectral clustering in distributed systems.
IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):568-86. doi: 10.1109/TPAMI.2010.88.
2
On landmark selection and sampling in high-dimensional data analysis.
Philos Trans A Math Phys Eng Sci. 2009 Nov 13;367(1906):4295-312. doi: 10.1098/rsta.2009.0161.
3
Spectral methods in machine learning and new strategies for very large datasets.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):369-74. doi: 10.1073/pnas.0810600105. Epub 2009 Jan 7.
4
Spectral grouping using the Nyström method.
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):214-25. doi: 10.1109/TPAMI.2004.1262185.
5
The isomap algorithm and topological stability.
Science. 2002 Jan 4;295(5552):7. doi: 10.1126/science.295.5552.7a.
6
A global geometric framework for nonlinear dimensionality reduction.
Science. 2000 Dec 22;290(5500):2319-23. doi: 10.1126/science.290.5500.2319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验