Suppr超能文献

混合聚多巴胺/聚赖氨酸(复合)涂层:从组装到与内皮细胞的相互作用。

Mixed poly(dopamine)/poly(L-lysine) (composite) coatings: from assembly to interaction with endothelial cells.

机构信息

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.

出版信息

Biomater Sci. 2015 Aug;3(8):1188-96. doi: 10.1039/c5bm00093a. Epub 2015 May 28.

Abstract

Engineered polymer films are of significant importance in the field of biomedicine. Poly(dopamine) (PDA) is becoming more and more a key player in this context. Herein, we deposited mixed films consisting of PDA and poly(L-lysine) (PLL) of different molecular weights. The coatings were characterized by quartz crystal microbalance with dissipation monitoring, atomic force microscopy, and X-ray photoelectron spectroscopy. The protein adsorption to the mixed films was found to decrease with increasing amounts of PLL. PDA/PLL capsules were also successfully assembled. Higher PLL content in the membranes reduced their thickness while the ζ-potential increased. Further, endothelial cell adhesion and proliferation over 96 h were found to be independent of the type of coating. Using PDA/PLL in liposome-containing composite coatings showed that sequential deposition of the layers yielded higher liposome trapping compared to one-step adsorption except for negatively charged liposomes. Association/uptake of fluorescent cargo by adherent endothelial cells was found to be different for PDA and PDA/PLL films. Taken together, our findings illustrate the potential of PDA/PLL mixed films as coatings for biomedical applications.

摘要

工程聚合物薄膜在生物医学领域具有重要意义。聚多巴胺(PDA)在这方面的作用越来越重要。本文中,我们沉积了由 PDA 和不同分子量的聚 L-赖氨酸(PLL)组成的混合薄膜。通过石英晶体微天平耗散监测、原子力显微镜和 X 射线光电子能谱对涂层进行了表征。研究发现,混合膜上的蛋白质吸附量随 PLL 含量的增加而减少。还成功组装了 PDA/PLL 胶囊。膜中的 PLL 含量越高,其厚度越小,ζ-电位越高。此外,内皮细胞在 96 小时内的黏附和增殖与涂层类型无关。在含有脂质体的复合涂层中使用 PDA/PLL 表明,与一步吸附相比,层的顺序沉积可捕获更多的脂质体,除了带负电荷的脂质体。黏附的内皮细胞对荧光货物的结合/摄取,对于 PDA 和 PDA/PLL 薄膜来说是不同的。综上所述,我们的研究结果表明 PDA/PLL 混合薄膜作为生物医学应用的涂层具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验