Suppr超能文献

利用神经肌肉和机械输入进行运动转换的地形和方向分类

Terrain and Direction Classification of Locomotion Transitions Using Neuromuscular and Mechanical Input.

作者信息

Joshi Deepak, Hahn Michael E

机构信息

Department of Electrical and Electronics Engineering, Graphic Era University, Dehradun, India.

Department of Human Physiology, University of Oregon, 122 Esslinger Hall, 1240 University of Oregon, Eugene, OR, 97401, USA.

出版信息

Ann Biomed Eng. 2016 Apr;44(4):1275-84. doi: 10.1007/s10439-015-1407-3. Epub 2015 Jul 30.

Abstract

To perform seamless transitions in powered lower limb prostheses, accurate classification of transition type is required a priori. We propose a structure to detect direction (ascent or descent) and terrain (ramp or stairs) patterns when a person transitions from over ground to stairs or ramp locomotion. We compared electromyography (EMG) and accelerometry performance with an emphasis on sensor fusion for improving classification. Seven healthy subjects were recruited for this initial study. Data were collected with accelerometers and EMG electrodes on the dominant leg, while subjects transitioned from over ground to ramp (ascent and descent) and stair (ascent and descent) locomotion. Linear discriminant analysis and support vector machine approaches were used as classifiers using feature spaces of both sensor types. The results indicate that transitions are better classified as terrain type than direction type (p < 0.001), suggesting a terrain focused approach for an efficient structure. We also show that EMG and accelerometry data sources are complementary across the transitional gait cycle, suggesting sensor fusion for robust classification. These findings suggest that a terrain and direction focused classification approach will be useful for inclusion in classification approaches utilized in lower limb amputee samples.

摘要

为了在动力下肢假肢中实现无缝过渡,事先需要对过渡类型进行准确分类。我们提出了一种结构,用于在人从平地行走过渡到楼梯或斜坡行走时检测方向(上升或下降)和地形(斜坡或楼梯)模式。我们比较了肌电图(EMG)和加速度计的性能,重点是用于改进分类的传感器融合。七名健康受试者被招募参加这项初步研究。在受试者从平地过渡到斜坡(上升和下降)以及楼梯(上升和下降)行走时,使用加速度计和EMG电极在优势腿上收集数据。使用线性判别分析和支持向量机方法作为分类器,利用两种传感器类型的特征空间。结果表明,将过渡分类为地形类型比方向类型更好(p < 0.001),这表明对于高效结构采用以地形为重点的方法。我们还表明,在过渡步态周期中,EMG和加速度计数据源是互补的,这表明传感器融合可用于可靠分类。这些发现表明,以地形和方向为重点的分类方法将有助于纳入下肢截肢者样本中使用的分类方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验