Suppr超能文献

典型的DHHC基序对于酵母S-酰基转移酶Swf1和Pfa4的活性并非绝对必需。

The canonical DHHC motif is not absolutely required for the activity of the yeast S-acyltransferases Swf1 and Pfa4.

作者信息

González Montoro Ayelén, Chumpen Ramirez Sabrina, Valdez Taubas Javier

机构信息

From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.

From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina

出版信息

J Biol Chem. 2015 Sep 11;290(37):22448-59. doi: 10.1074/jbc.M115.651356. Epub 2015 Jul 29.

Abstract

Protein S-acyltransferases, also known as palmitoyltransferases (PATs), are characterized by the presence of a 50-amino acid domain called the DHHC domain. Within this domain, these four amino acids constitute a highly conserved motif. It has been proposed that the palmitoylation reaction occurs through a palmitoyl-PAT covalent intermediate that involves the conserved cysteine in the DHHC motif. Mutation of this cysteine results in lack of function for several PATs, and DHHA or DHHS mutants are used regularly as catalytically inactive controls. In a genetic screen to isolate loss-of-function mutations in the yeast PAT Swf1, we isolated an allele encoding a Swf1 DHHR mutant. Overexpression of this mutant is able to partially complement a swf1Δ strain and to acylate the Swf1 substrates Tlg1, Syn8, and Snc1. Overexpression of the palmitoyltransferase Pfa4 DHHA or DHHR mutants also results in palmitoylation of its substrate Chs3. We also investigated the role of the first histidine of the DHHC motif. A Swf1 DQHC mutant is also partially active but a DQHR is not. Finally, we show that Swf1 substrates are differentially modified by both DHHR and DQHC Swf1 mutants. We propose that, in the absence of the canonical mechanism, alternative suboptimal mechanisms take place that are more dependent on the reactivity of the acceptor protein. These results also imply that caution must be exercised when proposing non-canonical roles for PATs on the basis of considering DHHC mutants as catalytically inactive and, more generally, contribute to an understanding of the mechanism of protein palmitoylation.

摘要

蛋白质S-酰基转移酶,也被称为棕榈酰转移酶(PATs),其特征是存在一个名为DHHC结构域的50个氨基酸的结构域。在这个结构域内,这四个氨基酸构成一个高度保守的基序。有人提出,棕榈酰化反应是通过一个涉及DHHC基序中保守半胱氨酸的棕榈酰-PAT共价中间体发生的。这个半胱氨酸的突变会导致几种PATs功能丧失,并且DHHA或DHHS突变体经常被用作催化无活性的对照。在一项分离酵母PAT Swf1功能丧失突变的遗传筛选中,我们分离出了一个编码Swf1 DHHR突变体的等位基因。该突变体的过表达能够部分互补swf1Δ菌株,并使Swf1底物Tlg1、Syn8和Snc1发生酰化。棕榈酰转移酶Pfa4 DHHA或DHHR突变体的过表达也会导致其底物Chs3的棕榈酰化。我们还研究了DHHC基序中第一个组氨酸的作用。Swf1 DQHC突变体也有部分活性,但DQHR突变体没有。最后,我们表明Swf1底物被DHHR和DQHC Swf1突变体以不同方式修饰。我们提出,在没有经典机制的情况下,会发生更依赖于受体蛋白反应性的替代次优机制。这些结果还意味着,在基于将DHHC突变体视为催化无活性来提出PATs的非经典作用时必须谨慎,并且更普遍地说,有助于理解蛋白质棕榈酰化的机制。

相似文献

1
The canonical DHHC motif is not absolutely required for the activity of the yeast S-acyltransferases Swf1 and Pfa4.
J Biol Chem. 2015 Sep 11;290(37):22448-59. doi: 10.1074/jbc.M115.651356. Epub 2015 Jul 29.
2
Specificity of transmembrane protein palmitoylation in yeast.
PLoS One. 2011 Feb 24;6(2):e16969. doi: 10.1371/journal.pone.0016969.
4
Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1.
Biochem J. 2013 Sep 15;454(3):427-35. doi: 10.1042/BJ20121693.
5
Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation.
EMBO J. 2005 Jul 20;24(14):2524-32. doi: 10.1038/sj.emboj.7600724. Epub 2005 Jun 23.
6
7
Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3.
J Cell Biol. 2006 Jul 3;174(1):19-25. doi: 10.1083/jcb.200602049.
8
Analysis of DHHC acyltransferases implies overlapping substrate specificity and a two-step reaction mechanism.
Traffic. 2009 Aug;10(8):1061-73. doi: 10.1111/j.1600-0854.2009.00925.x. Epub 2009 May 12.
10
Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity.
FASEB J. 2009 Aug;23(8):2605-15. doi: 10.1096/fj.08-127399. Epub 2009 Mar 19.

引用本文的文献

1
Genome-Wide Association Studies on the Kernel Row Number in a Multi-Parent Maize Population.
Int J Mol Sci. 2024 Mar 16;25(6):3377. doi: 10.3390/ijms25063377.
4
Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins.
Front Cell Infect Microbiol. 2022 Jan 27;12:821596. doi: 10.3389/fcimb.2022.821596. eCollection 2022.
5
A novel yeast-based high-throughput method for the identification of protein palmitoylation inhibitors.
Open Biol. 2021 Aug;11(8):200415. doi: 10.1098/rsob.200415. Epub 2021 Aug 4.
6
Regulation of Dynamic Protein S-Acylation.
Front Mol Biosci. 2021 Apr 26;8:656440. doi: 10.3389/fmolb.2021.656440. eCollection 2021.
7
A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications.
Chem Rev. 2021 Jun 23;121(12):7178-7248. doi: 10.1021/acs.chemrev.0c01108. Epub 2021 Apr 6.
8
Structure and Mechanism of DHHC Protein Acyltransferases.
J Mol Biol. 2020 Aug 21;432(18):4983-4998. doi: 10.1016/j.jmb.2020.05.023. Epub 2020 Jun 6.
10
Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies.
Chem Rev. 2018 Feb 14;118(3):919-988. doi: 10.1021/acs.chemrev.6b00750. Epub 2018 Jan 2.

本文引用的文献

1
The basics of thiols and cysteines in redox biology and chemistry.
Free Radic Biol Med. 2015 Mar;80:148-57. doi: 10.1016/j.freeradbiomed.2014.11.013. Epub 2014 Nov 27.
2
Mechanistic effects of protein palmitoylation and the cellular consequences thereof.
Chem Phys Lipids. 2014 May;180:44-52. doi: 10.1016/j.chemphyslip.2014.02.001. Epub 2014 Feb 15.
3
Identification of ZDHHC14 as a novel human tumour suppressor gene.
J Pathol. 2014 Apr;232(5):566-77. doi: 10.1002/path.4327. Epub 2014 Feb 8.
4
DHHC17 palmitoylates ClipR-59 and modulates ClipR-59 association with the plasma membrane.
Mol Cell Biol. 2013 Nov;33(21):4255-65. doi: 10.1128/MCB.00527-13. Epub 2013 Sep 3.
5
Oligomerization of DHHC protein S-acyltransferases.
J Biol Chem. 2013 Aug 2;288(31):22862-70. doi: 10.1074/jbc.M113.458794. Epub 2013 Jun 22.
6
Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1.
Biochem J. 2013 Sep 15;454(3):427-35. doi: 10.1042/BJ20121693.
7
Mechanism and function of DHHC S-acyltransferases.
Biochem Soc Trans. 2013 Feb 1;41(1):29-34. doi: 10.1042/BST20120328.
8
Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection.
Anal Biochem. 2013 Apr 1;435(1):74-82. doi: 10.1016/j.ab.2012.12.017. Epub 2013 Jan 4.
9
Hip14l-deficient mice develop neuropathological and behavioural features of Huntington disease.
Hum Mol Genet. 2013 Feb 1;22(3):452-65. doi: 10.1093/hmg/dds441. Epub 2012 Oct 16.
10
Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system.
Mol Biol Cell. 2012 Dec;23(23):4543-51. doi: 10.1091/mbc.E12-05-0336. Epub 2012 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验