Suppr超能文献

利用分子标记和16S rRNA基因扩增子数据集识别地表水中粪便污染的工具箱方法

Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.

作者信息

Ahmed W, Staley C, Sadowsky M J, Gyawali P, Sidhu J P S, Palmer A, Beale D J, Toze S

机构信息

CSIRO Land and Water, Ecosciences Precinct, Dutton Park, Queensland, Australia Faculty of Science, Health, and Education, University of the Sunshine Coast, Maroochydore, Queensland, Australia

Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA.

出版信息

Appl Environ Microbiol. 2015 Oct;81(20):7067-77. doi: 10.1128/AEM.02032-15. Epub 2015 Jul 31.

Abstract

In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways.

摘要

在本研究中,利用宿主相关分子标记和高通量测序技术对细菌16S rRNA基因群落进行分析,以确定澳大利亚布里斯班环境水体中粪便污染的来源。共从不同宿主群体(猫、牛、狗、马、人类和袋鼠)采集了92份粪便和综合废水样本,并从澳大利亚昆士兰州布里斯班河沿线的6个地点(BR1至BR6)采集了18份水样。对粪便、废水和河水样本中的细菌群落进行了测序。还对水样进行了鸟类相关(GFD)、牛相关(CowM3)、马相关和人类相关(HF183)分子标记的检测,以提供多条证据证明可能存在与特定宿主相关的粪便污染。在检测的18份水样中,分别有83%、33%、17%和17%的水样对GFD、HF183、CowM3和马标记物的实时PCR检测呈阳性。在河流中水样粪便污染的潜在来源中,DNA测序显示污水处理厂的贡献相对较小(最多占序列读数的13%)。很少检测到其他动物来源的贡献,且贡献非常小(<序列读数的3%)。通过序列分析与分子标记物检测确定的来源贡献显示出不同程度的一致性。还观察到粪便指示菌、宿主相关分子标记物和16S rRNA基因群落分析数据之间缺乏相关性。尽管如此,我们表明细菌群落和宿主相关分子标记物分析可以结合起来,以识别城市河流中粪便污染的潜在来源。本研究是一个概念验证,基于研究结果,我们建议在可能的情况下,结合细菌群落分析以及宿主相关分子标记物的PCR检测或定量分析,以提供有关水道中粪便污染来源的信息。

相似文献

1
Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.
Appl Environ Microbiol. 2015 Oct;81(20):7067-77. doi: 10.1128/AEM.02032-15. Epub 2015 Jul 31.
2
Human-Associated Lachnospiraceae Genetic Markers Improve Detection of Fecal Pollution Sources in Urban Waters.
Appl Environ Microbiol. 2018 Jul 2;84(14). doi: 10.1128/AEM.00309-18. Print 2018 Jul 15.
3
Quantitative identification of fecal water pollution sources by TaqMan real-time PCR assays using Bacteroidales 16S rRNA genetic markers.
Appl Microbiol Biotechnol. 2010 Dec;88(6):1373-83. doi: 10.1007/s00253-010-2880-0. Epub 2010 Sep 25.
5
Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater.
Appl Microbiol Biotechnol. 2007 Mar;74(4):890-901. doi: 10.1007/s00253-006-0714-x. Epub 2006 Dec 1.
6
Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers.
Appl Environ Microbiol. 2009 May;75(10):3045-54. doi: 10.1128/AEM.02343-08. Epub 2009 Mar 27.
8
Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources.
Water Res. 2013 Nov 15;47(18):6921-8. doi: 10.1016/j.watres.2013.03.061. Epub 2013 Jul 5.

引用本文的文献

2
Human Fecal Contamination Corresponds to Changes in the Freshwater Bacterial Communities of a Large River Basin.
Microbiol Spectr. 2021 Oct 31;9(2):e0120021. doi: 10.1128/Spectrum.01200-21. Epub 2021 Sep 8.
3
Microbial Source Tracking in the Love Creek Watershed, Delaware (USA).
Dela J Public Health. 2021 Jan 21;7(1):22-31. doi: 10.32481/djph.2021.01.006. eCollection 2021 Jan.
4
Microbial Diversity Profiling of Gut Microbiota of Using Three Hypervariable Regions of the Bacterial 16S rRNA.
Microorganisms. 2021 Aug 12;9(8):1721. doi: 10.3390/microorganisms9081721.
8
Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality.
Curr Environ Health Rep. 2020 Sep;7(3):311-324. doi: 10.1007/s40572-020-00278-1.
9
Airborne microbial biodiversity and seasonality in Northern and Southern Sweden.
PeerJ. 2020 Jan 27;8:e8424. doi: 10.7717/peerj.8424. eCollection 2020.
10
Influences of Ingredients and Bakers on the Bacteria and Fungi in Sourdough Starters and Bread.
mSphere. 2020 Jan 15;5(1):e00950-19. doi: 10.1128/mSphere.00950-19.

本文引用的文献

1
Comparison of concentration methods for quantitative detection of sewage-associated viral markers in environmental waters.
Appl Environ Microbiol. 2015 Mar;81(6):2042-9. doi: 10.1128/AEM.03851-14. Epub 2015 Jan 9.
2
Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River.
Sci Total Environ. 2015 Feb 1;505:435-45. doi: 10.1016/j.scitotenv.2014.10.012. Epub 2014 Oct 21.
3
Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River.
Front Microbiol. 2014 Oct 8;5:524. doi: 10.3389/fmicb.2014.00524. eCollection 2014.
4
Sources and distribution of surface water fecal contamination and prevalence of schistosomiasis in a Brazilian village.
PLoS Negl Trop Dis. 2014 Oct 2;8(10):e3186. doi: 10.1371/journal.pntd.0003186. eCollection 2014 Oct.
5
Multiple approaches to microbial source tracking in tropical northern Australia.
Microbiologyopen. 2014 Dec;3(6):860-74. doi: 10.1002/mbo3.209. Epub 2014 Sep 16.
6
Temporal dynamics in the ruminal microbiome of dairy cows during the transition period.
J Anim Sci. 2014 Sep;92(9):4014-22. doi: 10.2527/jas.2014-7621. Epub 2014 Jul 14.
7
Identification of a core bacterial community within the large intestine of the horse.
PLoS One. 2013 Oct 24;8(10):e77660. doi: 10.1371/journal.pone.0077660. eCollection 2013.
8
Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River.
J Appl Microbiol. 2013 Nov;115(5):1147-58. doi: 10.1111/jam.12323. Epub 2013 Aug 28.
9
Evaluation of molecular community analysis methods for discerning fecal sources and human waste.
Water Res. 2013 Nov 15;47(18):6862-72. doi: 10.1016/j.watres.2013.02.061. Epub 2013 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验