Suppr超能文献

基于分子动力学模拟的脂质双层膜的力学性质

Mechanical properties of lipid bilayers from molecular dynamics simulation.

作者信息

Venable Richard M, Brown Frank L H, Pastor Richard W

机构信息

Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.

Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, CA 93106, United States.

出版信息

Chem Phys Lipids. 2015 Nov;192:60-74. doi: 10.1016/j.chemphyslip.2015.07.014. Epub 2015 Jul 31.

Abstract

Lipid areas (Aℓ), bilayer area compressibilities (KA), bilayer bending constants (KC), and monolayer spontaneous curvatures (c0) from simulations using the CHARMM36 force field are reported for 12 representative homogenous lipid bilayers. Aℓ (or their surrogate, the average deuterium order parameter in the "plateau region" of the chain) agree very well with experiment, as do the KA. Simulated KC are in near quantitative agreement with vesicle flicker experiments, but are somewhat larger than KC from X-ray, pipette aspiration, and neutron spin echo for saturated lipids. Spontaneous curvatures of bilayer leaflets from the simulations are approximately 30% smaller than experimental values of monolayers in the inverse hexagonal phase.

摘要

报告了使用CHARMM36力场模拟得到的12种代表性均质脂质双层的脂质面积(Aℓ)、双层面积压缩性(KA)、双层弯曲常数(KC)和单层自发曲率(c0)。Aℓ(或其替代指标,即链“平台区”的平均氘序参数)与实验结果非常吻合,KA也是如此。模拟得到的KC与囊泡闪烁实验结果几乎在数量上一致,但对于饱和脂质,其值比X射线、移液管抽吸和中子自旋回波实验得到的KC略大。模拟得到的双层小叶自发曲率比反六角相中单层的实验值小约30%。

相似文献

1
Mechanical properties of lipid bilayers from molecular dynamics simulation.
Chem Phys Lipids. 2015 Nov;192:60-74. doi: 10.1016/j.chemphyslip.2015.07.014. Epub 2015 Jul 31.
3
Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
J Phys Chem B. 2010 Jun 17;114(23):7830-43. doi: 10.1021/jp101759q.
4
Experimentally determined tilt and bending moduli of single-component lipid bilayers.
Chem Phys Lipids. 2017 Jun;205:18-24. doi: 10.1016/j.chemphyslip.2017.04.006. Epub 2017 Apr 12.
5
Bending free energy from simulation: correspondence of planar and inverse hexagonal lipid phases.
Biophys J. 2013 May 21;104(10):2202-11. doi: 10.1016/j.bpj.2013.03.048.
7
CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.
J Chem Theory Comput. 2016 Jan 12;12(1):405-13. doi: 10.1021/acs.jctc.5b00935. Epub 2015 Dec 3.
8
Mechanical properties of anionic asymmetric bilayers from atomistic simulations.
J Chem Phys. 2021 Jun 14;154(22):224701. doi: 10.1063/5.0048232.
9
Elastic curvature constants of lipid monolayers and bilayers.
Chem Phys Lipids. 2006 Nov-Dec;144(2):146-59. doi: 10.1016/j.chemphyslip.2006.08.004. Epub 2006 Sep 6.
10
A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties.
Biochim Biophys Acta. 2014 Oct;1838(10):2520-9. doi: 10.1016/j.bbamem.2014.06.010. Epub 2014 Jun 19.

引用本文的文献

1
A unified model of transient poration induced by antimicrobial peptides.
Proc Natl Acad Sci U S A. 2025 Sep 2;122(35):e2510294122. doi: 10.1073/pnas.2510294122. Epub 2025 Aug 29.
3
Quantifying Acyl Chain Interdigitation in Simulated Bilayers via Direct Transbilayer Interactions.
J Chem Inf Model. 2025 Apr 28;65(8):3879-3885. doi: 10.1021/acs.jcim.4c02287. Epub 2025 Apr 16.
4
How pore formation in complex biological membranes is governed by lipid composition, mechanics, and lateral sorting.
PNAS Nexus. 2025 Feb 21;4(3):pgaf033. doi: 10.1093/pnasnexus/pgaf033. eCollection 2025 Mar.
6
Effects of Lipid Headgroups on the Mechanical Properties and In Vitro Cellular Internalization of Liposomes.
Langmuir. 2025 Feb 4;41(4):2600-2618. doi: 10.1021/acs.langmuir.4c04363. Epub 2025 Jan 20.
7
Predicting protein curvature sensing across membrane compositions with a bilayer continuum model.
bioRxiv. 2024 Dec 21:2024.01.15.575755. doi: 10.1101/2024.01.15.575755.
9
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.

本文引用的文献

2
Experimental support for tilt-dependent theory of biomembrane mechanics.
Phys Rev Lett. 2014 Dec 12;113(24):248102. doi: 10.1103/PhysRevLett.113.248102.
4
Determination of biomembrane bending moduli in fully atomistic simulations.
J Am Chem Soc. 2014 Oct 1;136(39):13582-5. doi: 10.1021/ja507910r. Epub 2014 Sep 16.
5
CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.
J Comput Chem. 2014 Oct 15;35(27):1997-2004. doi: 10.1002/jcc.23702. Epub 2014 Aug 7.
7
A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties.
Biochim Biophys Acta. 2014 Oct;1838(10):2520-9. doi: 10.1016/j.bbamem.2014.06.010. Epub 2014 Jun 19.
8
Fluid lipid membranes: from differential geometry to curvature stresses.
Chem Phys Lipids. 2015 Jan;185:11-45. doi: 10.1016/j.chemphyslip.2014.05.001. Epub 2014 May 13.
9
Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape.
Biophys J. 2014 May 6;106(9):1958-69. doi: 10.1016/j.bpj.2014.02.037.
10
What are the true values of the bending modulus of simple lipid bilayers?
Chem Phys Lipids. 2015 Jan;185:3-10. doi: 10.1016/j.chemphyslip.2014.04.003. Epub 2014 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验