Rice Amy, Zourou Andriana C, Goodell Evan P, Fu Riqiang, Pastor Richard W, Cotten Myriam L
Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States.
Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States.
J Phys Chem B. 2025 Jan 9;129(1):210-227. doi: 10.1021/acs.jpcb.4c05845. Epub 2024 Dec 16.
Lysophospholipids (LPLs) and host defense peptides (HDPs) are naturally occurring membrane-active agents that disrupt key membrane properties, including the hydrocarbon thickness, intrinsic curvature, and molecular packing. Although the membrane activity of these agents has been widely examined separately, their combined effects are largely unexplored. Here, we use experimental and computational tools to investigate how lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), an LPL of lower positive spontaneous curvature, influence the membrane activity of piscidin 1 (P1), an α-helical HDP from fish. Four membrane systems are probed: 75:25 C16:0-C18:1 PC (POPC)/C16:0-C18:1 phosphoglycerol (POPG), 50:25:25 POPC/POPG/16:0 LPC, 75:25 C16:0-C18:1 PE (POPE)/POPG, and 50:25:25 POPE/POPG/14:0 LPE. Dye leakage, circular dichroism, and NMR experiments demonstrate that while the presence of LPLs alone does not induce leakage-proficient defects, it boosts the permeabilization capability of P1, resulting in an efficacy order of POPC/POPG/16:0 LPC > POPE/POPG/14:0 LPE > POPC/POPG > POPE/POPG. This enhancement occurs without altering the membrane affinity and conformation of P1. Molecular dynamics simulations feature two types of asymmetric membranes to represent the imbalanced ("area stressed") and balanced ("area relaxed") distribution of lipids and peptides in the two leaflets. The simulations capture the membrane thinning effects of P1, LPC, and LPE, and the positive curvature strain imposed by both LPLs is reflected in the lateral pressure profiles. They also reveal a higher number of membrane defects for the P1/LPC than P1/LPE combination, congruent with the permeabilization experiments. Altogether, these results show that P1 and LPLs disrupt membranes in a concerted fashion, with LPC, the more disruptive LPL, boosting the permeabilization of P1 more than LPE. This mechanistic knowledge is relevant to understanding biological processes where multiple membrane-active agents such as HDPs and LPLs are involved.
溶血磷脂(LPLs)和宿主防御肽(HDPs)是天然存在的膜活性物质,它们会破坏关键的膜特性,包括烃链厚度、固有曲率和分子排列。尽管这些物质的膜活性已被分别广泛研究,但其联合效应在很大程度上仍未被探索。在此,我们使用实验和计算工具来研究溶血磷脂酰胆碱(LPC)和溶血磷脂酰乙醇胺(LPE,一种具有较低正自发曲率的LPL)如何影响鱼源α-螺旋HDP——杀鱼菌素1(P1)的膜活性。我们探究了四种膜系统:75:25 C16:0-C18:1 PC(POPC)/C16:0-C18:1磷酸甘油(POPG)、50:25:25 POPC/POPG/16:0 LPC、75:25 C16:0-C18:1 PE(POPE)/POPG以及50:25:25 POPE/POPG/14:0 LPE。染料泄漏、圆二色性和核磁共振实验表明,虽然单独存在LPLs不会诱导产生可导致泄漏的缺陷,但它会增强P1的通透能力,导致效能顺序为POPC/POPG/16:0 LPC > POPE/POPG/14:0 LPE > POPC/POPG > POPE/POPG。这种增强在不改变P1的膜亲和力和构象的情况下发生。分子动力学模拟采用两种类型的不对称膜来代表脂质和肽在两个小叶中的不平衡(“面积受压”)和平衡(“面积松弛”)分布。模拟捕捉到了P1、LPC和LPE对膜的变薄效应,并且两种LPLs施加的正曲率应变反映在侧向压力分布中。模拟还显示,与P1/LPE组合相比,P1/LPC组合导致的膜缺陷数量更多,这与通透实验结果一致。总之,这些结果表明P1和LPLs以协同方式破坏膜,其中更具破坏性的LPL——LPC,比LPE更能增强P1的通透能力。这一机制知识对于理解涉及多种膜活性物质(如HDPs和LPLs)的生物过程具有重要意义。