Suppr超能文献

一种预测新型肿瘤化合物II期试验后监管批准情况的工具。

A Tool for Predicting Regulatory Approval After Phase II Testing of New Oncology Compounds.

作者信息

DiMasi J A, Hermann J C, Twyman K, Kondru R K, Stergiopoulos S, Getz K A, Rackoff W

机构信息

Tufts Center for the Study of Drug Development, Tufts University, Boston, Massachusetts, USA.

Janssen Research & Development, Raritan, New Jersey, USA.

出版信息

Clin Pharmacol Ther. 2015 Nov;98(5):506-13. doi: 10.1002/cpt.194. Epub 2015 Sep 24.

Abstract

We developed an algorithm (ANDI) for predicting regulatory marketing approval for new cancer drugs after phase II testing has been conducted, with the objective of providing a tool to improve drug portfolio decision-making. We examined 98 oncology drugs from the top 50 pharmaceutical companies (2006 sales) that first entered clinical development from 1999 to 2007, had been taken to at least phase II development, and had a known final outcome (research abandonment or regulatory marketing approval). Data on safety, efficacy, operational, market, and company characteristics were obtained from public sources. Logistic regression and machine-learning methods were used to provide an unbiased approach to assess overall predictability and to identify the most important individual predictors. We found that a simple four-factor model (activity, number of patients in the pivotal phase II trial, phase II duration, and a prevalence-related measure) had high sensitivity and specificity for predicting regulatory marketing approval.

摘要

我们开发了一种算法(ANDI),用于在新癌症药物进行II期试验后预测其监管营销批准情况,目的是提供一种工具来改善药物组合决策。我们研究了来自50家顶级制药公司(2006年销售额)的98种肿瘤药物,这些药物于1999年至2007年首次进入临床开发,至少进入了II期开发阶段,并且有已知的最终结果(研究放弃或监管营销批准)。安全性、有效性、运营、市场和公司特征的数据来自公开来源。使用逻辑回归和机器学习方法提供一种无偏方法来评估总体可预测性并识别最重要的个体预测因素。我们发现,一个简单的四因素模型(活性、关键II期试验中的患者数量、II期持续时间以及一种与患病率相关的指标)在预测监管营销批准方面具有高敏感性和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验