Teodoro Douglas, Naderi Nona, Yazdani Anthony, Zhang Boya, Bornet Alban
Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Laboratoire Interdisciplinaire des Sciences du Numérique, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
NPJ Digit Med. 2025 Jul 30;8(1):486. doi: 10.1038/s41746-025-01886-7.
Artificial intelligence (AI) is increasingly applied to clinical trial risk assessment, aiming to improve safety and efficiency. This scoping review analyzed 142 studies published between 2013 and 2024, focusing on safety (n = 55), efficacy (n = 46), and operational (n = 45) risk prediction. AI techniques, including traditional machine learning, deep learning (e.g., graph neural networks, transformers), and causal machine learning, are used for tasks like adverse drug event prediction, treatment effect estimation, and phase transition prediction. These methods utilize diverse data sources, from molecular structures and clinical trial protocols to patient data and scientific publications. Recently, large language models (LLMs) have seen a surge in applications, featuring in 7 out of 33 studies in 2023. While some models achieve high performance (AUROC up to 96%), challenges remain, including selection bias, limited prospective studies, and data quality issues. Despite these limitations, AI-based risk assessment holds substantial promise for transforming clinical trials, particularly through improved risk-based monitoring frameworks.
人工智能(AI)越来越多地应用于临床试验风险评估,旨在提高安全性和效率。本综述分析了2013年至2024年发表的142项研究,重点关注安全性(n = 55)、疗效(n = 46)和操作(n = 45)风险预测。人工智能技术,包括传统机器学习、深度学习(如图形神经网络、变压器)和因果机器学习,用于药物不良事件预测、治疗效果估计和阶段转换预测等任务。这些方法利用从分子结构、临床试验方案到患者数据和科学出版物等各种数据源。最近,大语言模型(LLMs)的应用激增,在2023年的33项研究中有7项使用了该模型。虽然一些模型取得了高性能(AUROC高达96%),但挑战依然存在,包括选择偏倚、前瞻性研究有限和数据质量问题。尽管存在这些局限性,但基于人工智能的风险评估对于变革临床试验具有巨大潜力,特别是通过改进基于风险的监测框架。