Soparkar Ketaki, Kinana Alfred D, Weeks Jon W, Morrison Keith D, Nikaido Hiroshi, Misra Rajeev
School of Life Sciences, Arizona State University, Tempe, Arizona, USA CoValence Laboratories, Chandler, Arizona, USA.
Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
J Bacteriol. 2015 Oct;197(20):3255-64. doi: 10.1128/JB.00547-15. Epub 2015 Aug 3.
The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions--Y49S, V127A, V127G, D153E, and G288C--mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions--F453C and L486W--were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain.
The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity.
大肠杆菌的AcrB蛋白与TolC和AcrA一起形成一个连续的包膜通道,用于捕获和排出多种抗生素及细胞代谢物。在本研究中,我们试图通过进行遗传和功能分析来扩展对AcrB的认识。我们从一个在药物结合口袋中带有F610A替代的AcrB突变体开始,获得了能克服F610A突变所赋予的抗生素超敏表型的第二位点替代。七个独特的单氨基酸替代中的五个——Y49S、V127A、V127G、D153E和G288C——位于AcrB的周质转运结构域,其中D153E和G288C突变分别位于远端药物结合口袋附近和该口袋处。另外两个替代——F453C和L486W——分别位于跨膜(TM)螺旋5和6。硝基头孢菌素外排动力学数据表明,所有周质抑制子都显著恢复了因F610A突变而受损的硝基头孢菌素结合亲和力。令人惊讶的是,尽管测试抗生素的最低抑菌浓度增加且N - 苯基 - 1 - 萘胺外排,但跨膜抑制子并未改善硝基头孢菌素外排动力学。这些数据表明,周质替代通过影响对远端结合口袋的药物结合亲和力起作用,而跨膜替代可能间接影响药物结合结构域的构象动力学。
AcrB蛋白及其同源物在许多重要的人类细菌病原体中赋予多药耐药性。对这些外排泵蛋白功能的更深入了解将有助于开发针对它们的有效抑制剂。本文所呈现的研究通过分离和表征克服影响药物结合口袋突变的药物敏感性表型的基因内抑制突变,来研究AcrB的药物结合口袋突变体。数据揭示了AcrB蛋白在其药物外排活性方面显著的结构 - 功能可塑性。