Makhamadjamonov Farrukh, Karolak Michal Emil, Smyth Lesley, Ababou Abdessamad
John Innes Centre, Norwich, UK.
School of Health, Sport and Bioscience, University of East London, London, UK.
Protein Sci. 2025 Jan;34(1):e5252. doi: 10.1002/pro.5252.
In Escherichia coli AcrB is a major multidrug exporter, which confers the bacterium resistance to many antibiotics with diverse structural and chemical proprieties. Studies have identified three possible tunnels (or channels) within AcrB that different substrates use before reaching the distal pocket, from which they are subsequently extruded. Recently, we reported that mutations in the AcrB gate loop may affect the conformational change kinetics involved in substrate export rather than directly affecting molecular interactions with this loop, and we highlighted the distinct export tunnel preferences between erythromycin and doxorubicin. To further understand the gate loop's role in AcrB's export activity and the rationale behind substrate preferences among the three possible export tunnels, namely tunnel-1, -2, and -3, we investigated the structural and functional effects of several single and multiple mutations in the gate loop of AcrB. Our findings indicate that all three tunnels are energetically favorable for the substrates studied, with the majority forming more hydrogen bonds in any tunnel compared to the distal pocket. Moreover, our experimental and computational data revealed that some substrates with high molecular similarity exhibited different export tunnel preferences, as strongly suggested by their MIC values. To explain this unexpected outcome, we propose a generalized explanation that the conformational change kinetics in AcrB is substrate-dependent.
在大肠杆菌中,AcrB是一种主要的多药外排泵,它赋予细菌对许多具有不同结构和化学特性的抗生素的抗性。研究已经确定AcrB内有三条可能的通道,不同的底物在到达远端口袋(随后从该口袋被挤出)之前会通过这些通道。最近,我们报道AcrB门环中的突变可能影响底物输出所涉及的构象变化动力学,而不是直接影响与该环的分子相互作用,并且我们强调了红霉素和阿霉素之间不同的输出通道偏好。为了进一步了解门环在AcrB输出活性中的作用以及在三条可能的输出通道(即通道1、通道2和通道3)之间底物偏好背后的原理,我们研究了AcrB门环中几个单突变和多突变的结构和功能影响。我们的研究结果表明,所有三条通道对所研究的底物在能量上都是有利的,与远端口袋相比,大多数底物在任何通道中形成的氢键更多。此外,我们的实验和计算数据表明,一些具有高分子相似性的底物表现出不同的输出通道偏好,这从它们的最低抑菌浓度值中得到了有力证明。为了解释这一意外结果,我们提出了一个普遍的解释,即AcrB中的构象变化动力学是底物依赖性的。