Suppr超能文献

AcrAB-TolC多药外排泵的结构

Structure of the AcrAB-TolC multidrug efflux pump.

作者信息

Du Dijun, Wang Zhao, James Nathan R, Voss Jarrod E, Klimont Ewa, Ohene-Agyei Thelma, Venter Henrietta, Chiu Wah, Luisi Ben F

机构信息

Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.

National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Nature. 2014 May 22;509(7501):512-5. doi: 10.1038/nature13205. Epub 2014 Apr 20.

Abstract

The capacity of numerous bacterial species to tolerate antibiotics and other toxic compounds arises in part from the activity of energy-dependent transporters. In Gram-negative bacteria, many of these transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component. A model system for such a pump is the acridine resistance complex of Escherichia coli. This pump assembly comprises the outer-membrane channel TolC, the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which bridges these two integral membrane proteins. The AcrAB-TolC efflux pump is able to transport vectorially a diverse array of compounds with little chemical similarity, thus conferring resistance to a broad spectrum of antibiotics. Homologous complexes are found in many Gram-negative species, including in animal and plant pathogens. Crystal structures are available for the individual components of the pump and have provided insights into substrate recognition, energy coupling and the transduction of conformational changes associated with the transport process. However, how the subunits are organized in the pump, their stoichiometry and the details of their interactions are not known. Here we present the pseudo-atomic structure of a complete multidrug efflux pump in complex with a modulatory protein partner from E. coli. The model defines the quaternary organization of the pump, identifies key domain interactions, and suggests a cooperative process for channel assembly and opening. These findings illuminate the basis for drug resistance in numerous pathogenic bacterial species.

摘要

许多细菌物种耐受抗生素和其他有毒化合物的能力部分源于能量依赖性转运蛋白的活性。在革兰氏阴性菌中,许多这类转运蛋白形成跨内膜和外膜的多组分“泵”,并由初级或次级转运蛋白组分提供能量驱动。这种泵的一个模型系统是大肠杆菌的吖啶抗性复合物。该泵组件包括外膜通道TolC、位于内膜的次级转运蛋白AcrB以及连接这两种整合膜蛋白的周质蛋白AcrA。AcrAB - TolC外排泵能够以向量方式转运一系列化学性质差异很小的化合物,从而赋予对广谱抗生素的抗性。在许多革兰氏阴性菌物种中都发现了同源复合物,包括动物和植物病原体。现已获得该泵各个组分的晶体结构,这些结构为底物识别、能量偶联以及与转运过程相关的构象变化转导提供了见解。然而,这些亚基在泵中的组织方式、它们的化学计量以及相互作用的细节尚不清楚。在这里,我们展示了一个完整的多药外排泵与来自大肠杆菌的调节蛋白伴侣形成复合物的准原子结构。该模型定义了泵的四级结构,确定了关键结构域相互作用,并提出了通道组装和开放的协同过程。这些发现阐明了许多致病细菌物种耐药性的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd70/4361902/b31a759f6dc8/emss-57305-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验