Suppr超能文献

一种必需的毒物:枯草芽孢杆菌中环状二腺苷单磷酸的合成与降解

An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis.

作者信息

Gundlach Jan, Mehne Felix M P, Herzberg Christina, Kampf Jan, Valerius Oliver, Kaever Volkhard, Stülke Jörg

机构信息

Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany.

Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany.

出版信息

J Bacteriol. 2015 Oct;197(20):3265-74. doi: 10.1128/JB.00564-15. Epub 2015 Aug 3.

Abstract

UNLABELLED

Gram-positive bacteria synthesize the second messenger cyclic di-AMP (c-di-AMP) to control cell wall and potassium homeostasis and to secure the integrity of their DNA. In the firmicutes, c-di-AMP is essential for growth. The model organism Bacillus subtilis encodes three diadenylate cyclases and two potential phosphodiesterases to produce and degrade c-di-AMP, respectively. Among the three cyclases, CdaA is conserved in nearly all firmicutes, and this enzyme seems to be responsible for the c-di-AMP that is required for cell wall homeostasis. Here, we demonstrate that CdaA localizes to the membrane and forms a complex with the regulatory protein CdaR and the glucosamine-6-phosphate mutase GlmM. Interestingly, cdaA, cdaR, and glmM form a gene cluster that is conserved throughout the firmicutes. This conserved arrangement and the observed interaction between the three proteins suggest a functional relationship. Our data suggest that GlmM and GlmS are involved in the control of c-di-AMP synthesis. These enzymes convert glutamine and fructose-6-phosphate to glutamate and glucosamine-1-phosphate. c-di-AMP synthesis is enhanced if the cells are grown in the presence of glutamate compared to that in glutamine-grown cells. Thus, the quality of the nitrogen source is an important signal for c-di-AMP production. In the analysis of c-di-AMP-degrading phosphodiesterases, we observed that both phosphodiesterases, GdpP and PgpH (previously known as YqfF), contribute to the degradation of the second messenger. Accumulation of c-di-AMP in a gdpP pgpH double mutant is toxic for the cells, and the cells respond to this accumulation by inactivation of the diadenylate cyclase CdaA.

IMPORTANCE

Bacteria use second messengers for signal transduction. Cyclic di-AMP (c-di-AMP) is the only second messenger known so far that is essential for a large group of bacteria. We have studied the regulation of c-di-AMP synthesis and the role of the phosphodiesterases that degrade this second messenger. c-di-AMP synthesis strongly depends on the nitrogen source: glutamate-grown cells produce more c-di-AMP than glutamine-grown cells. The accumulation of c-di-AMP in a strain lacking both phosphodiesterases is toxic and results in inactivation of the diadenylate cyclase CdaA. Our results suggest that CdaA is the critical diadenylate cyclase that produces the c-di-AMP that is both essential and toxic upon accumulation.

摘要

未标记

革兰氏阳性菌合成第二信使环二腺苷酸(c-di-AMP)以控制细胞壁和钾离子稳态,并确保其DNA的完整性。在厚壁菌门中,c-di-AMP对生长至关重要。模式生物枯草芽孢杆菌编码三种二腺苷酸环化酶和两种潜在的磷酸二酯酶,分别用于产生和降解c-di-AMP。在这三种环化酶中,CdaA在几乎所有厚壁菌门中都保守,并且这种酶似乎负责细胞壁稳态所需的c-di-AMP。在这里,我们证明CdaA定位于膜上,并与调节蛋白CdaR和葡糖胺-6-磷酸变位酶GlmM形成复合物。有趣的是,cdaA、cdaR和glmM形成一个在整个厚壁菌门中都保守的基因簇。这种保守的排列以及观察到的三种蛋白质之间的相互作用表明它们之间存在功能关系。我们的数据表明GlmM和GlmS参与了c-di-AMP合成的控制。这些酶将谷氨酰胺和6-磷酸果糖转化为谷氨酸和1-磷酸葡糖胺。与在谷氨酰胺中生长的细胞相比,如果细胞在谷氨酸存在下生长,c-di-AMP的合成会增强。因此,氮源的质量是c-di-AMP产生的重要信号。在对降解c-di-AMP的磷酸二酯酶的分析中,我们观察到两种磷酸二酯酶GdpP和PgpH(以前称为YqfF)都有助于第二信使的降解。c-di-AMP在gdpP pgpH双突变体中的积累对细胞有毒,并且细胞通过使二腺苷酸环化酶CdaA失活来应对这种积累。

重要性

细菌利用第二信使进行信号转导。环二腺苷酸(c-di-AMP)是迄今为止已知的对一大类细菌必不可少的唯一第二信使。我们研究了c-di-AMP合成的调控以及降解这种第二信使的磷酸二酯酶的作用。c-di-AMP的合成强烈依赖于氮源:在谷氨酸中生长的细胞比在谷氨酰胺中生长的细胞产生更多的c-di-AMP。在缺乏两种磷酸二酯酶的菌株中c-di-AMP的积累是有毒的,并导致二腺苷酸环化酶CdaA失活。我们的结果表明CdaA是关键的二腺苷酸环化酶,它产生的c-di-AMP在积累时既是必需的又是有毒的。

相似文献

1
An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis.
J Bacteriol. 2015 Oct;197(20):3265-74. doi: 10.1128/JB.00564-15. Epub 2015 Aug 3.
5
Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria.
Curr Genet. 2016 Nov;62(4):731-738. doi: 10.1007/s00294-016-0600-8. Epub 2016 Apr 13.
8
A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP.
Mol Microbiol. 2015 Jul;97(2):189-204. doi: 10.1111/mmi.13026. Epub 2015 May 9.
9
Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes.
J Biol Chem. 2015 Mar 6;290(10):6596-606. doi: 10.1074/jbc.M114.630418. Epub 2015 Jan 20.

引用本文的文献

4
Dysregulated biosynthesis and hydrolysis of cyclic-di-adenosine monophosphate impedes sporulation and butanol and acetone production in NCIMB 8052.
Front Bioeng Biotechnol. 2025 Feb 28;13:1547226. doi: 10.3389/fbioe.2025.1547226. eCollection 2025.
5
Thermal Plasticity and Evolutionary Constraints in : Implications for Climate Change Adaptation.
Biology (Basel). 2024 Dec 23;13(12):1088. doi: 10.3390/biology13121088.
6
Membrane-embedded CdaA is required for efficient synthesis of second messenger cyclic di-AMP.
Commun Biol. 2024 Dec 30;7(1):1710. doi: 10.1038/s42003-024-07420-x.
8
The multifaceted role of c-di-AMP signaling in the regulation of lipopolysaccharide structure and function.
Front Cell Infect Microbiol. 2024 Jun 12;14:1418651. doi: 10.3389/fcimb.2024.1418651. eCollection 2024.
9
Bacterial cell volume regulation and the importance of cyclic di-AMP.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0018123. doi: 10.1128/mmbr.00181-23. Epub 2024 Jun 10.
10
DarA-the central processing unit for the integration of osmotic with potassium and amino acid homeostasis in .
J Bacteriol. 2024 Jul 25;206(7):e0019024. doi: 10.1128/jb.00190-24. Epub 2024 Jun 4.

本文引用的文献

1
Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers.
J Bacteriol. 2016 Jan 1;198(1):15-26. doi: 10.1128/JB.00331-15.
2
3
A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP.
Mol Microbiol. 2015 Jul;97(2):189-204. doi: 10.1111/mmi.13026. Epub 2015 May 9.
4
Recent functional insights into the role of (p)ppGpp in bacterial physiology.
Nat Rev Microbiol. 2015 May;13(5):298-309. doi: 10.1038/nrmicro3448. Epub 2015 Apr 8.
6
Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes.
J Biol Chem. 2015 Mar 6;290(10):6596-606. doi: 10.1074/jbc.M114.630418. Epub 2015 Jan 20.
7
An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E747-56. doi: 10.1073/pnas.1416485112. Epub 2015 Jan 12.
8
Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA.
J Biol Chem. 2015 Jan 30;290(5):3069-80. doi: 10.1074/jbc.M114.619619. Epub 2014 Nov 28.
9
The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function.
Cell. 2014 Sep 11;158(6):1389-1401. doi: 10.1016/j.cell.2014.07.046.
10
Control of the diadenylate cyclase CdaS in Bacillus subtilis: an autoinhibitory domain limits cyclic di-AMP production.
J Biol Chem. 2014 Jul 25;289(30):21098-107. doi: 10.1074/jbc.M114.562066. Epub 2014 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验