Foster Alexander J, Li Haoyang, Drougkas Panagiotis, Schuurman-Wolters Gea K, Ten Kate Joeri, Paulino Cristina, Poolman Bert
Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands.
Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany.
Commun Biol. 2024 Dec 30;7(1):1710. doi: 10.1038/s42003-024-07420-x.
Cyclic di-adenylate monophosphate (cyclic di-AMP) is an important second messenger in microorganisms. Cyclic di-AMP regulates bacterial cell volume and turgor via control of potassium and compatible solute transport but is also involved in many other processes, including the activation of the metazoan innate immune response to bacterial infections. We compare the activity of full-length membrane-embedded CdaA, the enzyme that synthesizes cyclic di-AMP, with the water-soluble catalytic domain CdaA-DAC. Purified CdaA from L. lactis was studied in the detergent-solubilized state, and in lipid nanodiscs and vesicles. We show that CdaA is tetrameric and the membrane-bound complex has more than 2-orders of magnitude higher activity than soluble CdaA-DAC. CdaA activity increases with pH but does not strongly depend on the salt or lipid content, factors that are crucial for the control of osmoregulatory transporters. Cryo-EM and in-silico structure prediction of CdaA show that the two DAC dimers engage in a head-to-head interaction, leading to cyclic-di-AMP formation. The inhibitor phosphoglucomutase prevents this active conformation. We observe dynamic flexibility between the catalytic and membrane domains, even in the presence of ATP or non-hydrolyzable substrate ApCpp. This is the first comprehensive functional and structural characterization of a full-length cyclic di-AMP-specific cyclase.
环二磷酸腺苷(环二腺苷酸,cyclic di-AMP)是微生物中一种重要的第二信使。环二腺苷酸通过控制钾离子和相容性溶质的转运来调节细菌细胞体积和膨压,但它也参与许多其他过程,包括后生动物对细菌感染的先天免疫反应的激活。我们比较了全长膜嵌入型CdaA(合成环二腺苷酸的酶)与水溶性催化结构域CdaA-DAC的活性。对来自乳酸乳球菌的纯化CdaA在去污剂增溶状态、脂质纳米盘和囊泡中进行了研究。我们发现CdaA是四聚体,且膜结合复合物的活性比可溶性CdaA-DAC高两个数量级以上。CdaA的活性随pH值升高而增加,但对盐或脂质含量的依赖性不强,而盐和脂质含量是控制渗透调节转运蛋白的关键因素。CdaA的冷冻电镜和计算机结构预测表明,两个DAC二聚体进行头对头相互作用,从而形成环二腺苷酸。抑制剂磷酸葡萄糖变位酶可阻止这种活性构象。即使存在ATP或不可水解底物ApCpp,我们也观察到催化结构域和膜结构域之间存在动态灵活性。这是对全长环二腺苷酸特异性环化酶的首次全面功能和结构表征。