Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Göttingen, Germany.
Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Göttingen, Germany.
J Bacteriol. 2018 Dec 7;201(1). doi: 10.1128/JB.00462-18. Print 2019 Jan 1.
Cyclic di-AMP is a second-messenger nucleotide that is produced by many bacteria and some archaea. Recent work has shown that c-di-AMP is unique among the signaling nucleotides, as this molecule is in many bacteria both essential on one hand and toxic upon accumulation on the other. Moreover, in bacteria, like , c-di-AMP controls a biological process, potassium homeostasis, by binding both potassium transporters and riboswitch molecules in the mRNAs that encode the potassium transporters. In addition to the control of potassium homeostasis, c-di-AMP has been implicated in many cellular activities, including DNA repair, cell wall homeostasis, osmotic adaptation, biofilm formation, central metabolism, and virulence. c-di-AMP is synthesized and degraded by diadenylate cyclases and phosphodiesterases, respectively. In the diadenylate cyclases, one type of catalytic domain, the diadenylate cyclase (DAC) domain, is coupled to various other domains that control the localization, the protein-protein interactions, and the regulation of the enzymes. The phosphodiesterases have a catalytic core that consists either of a DHH/DHHA1 or of an HD domain. Recent findings on the occurrence, domain organization, activity control, and structural features of diadenylate cyclases and phosphodiesterases are discussed in this review.
环二鸟苷酸(c-di-AMP)是一种由许多细菌和一些古菌产生的第二信使核苷酸。最近的研究表明,c-di-AMP 在信号核苷酸中是独一无二的,因为这种分子在许多细菌中一方面是必需的,另一方面积累时又是有毒的。此外,在细菌中,如 ,c-di-AMP 通过结合编码钾转运体的 mRNA 中的钾转运体和核糖开关分子来控制生物过程,钾离子稳态。除了控制钾离子稳态外,c-di-AMP 还与许多细胞活动有关,包括 DNA 修复、细胞壁稳态、渗透适应、生物膜形成、中心代谢和毒力。c-di-AMP 分别由二腺苷酸环化酶和磷酸二酯酶合成和降解。在二腺苷酸环化酶中,一种催化结构域,即二腺苷酸环化酶(DAC)结构域,与控制酶的定位、蛋白-蛋白相互作用和调节的各种其他结构域偶联。磷酸二酯酶具有由 DHH/DHHA1 或 HD 结构域组成的催化核心。本文综述了环二鸟苷酸二酯酶和磷酸二酯酶的发生、结构域组织、活性控制和结构特征的最新发现。