Suppr超能文献

内质网和高尔基体中位点特异性N-聚糖重塑的分析

Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi.

作者信息

Hang Ivan, Lin Chia-wei, Grant Oliver C, Fleurkens Susanna, Villiger Thomas K, Soos Miroslav, Morbidelli Massimo, Woods Robert J, Gauss Robert, Aebi Markus

机构信息

Institute of Microbiology, Department of Biology.

Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.

出版信息

Glycobiology. 2015 Dec;25(12):1335-49. doi: 10.1093/glycob/cwv058. Epub 2015 Aug 3.

Abstract

The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endoplasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling of the model protein Pdi1p expressed in insect cells. Molecular dynamics simulation, mutational analysis, kinetic studies of in vitro processing events and glycan flux analysis supported the defining role of the protein in N-glycan processing.

摘要

N 连接蛋白糖基化的标志是在分泌途径中产生多样的聚糖结构。在内质网和高尔基体中,N 聚糖重塑的动态、非模板驱动过程为结构多样性提供了细胞环境。我们应用新开发的基于质谱的分析方法,对昆虫细胞中表达的模型蛋白 Pdi1p 的位点特异性 N 聚糖重塑进行定量分析。分子动力学模拟、突变分析、体外加工事件的动力学研究以及聚糖通量分析均支持该蛋白在 N 聚糖加工中起决定性作用。

相似文献

1
Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi.
Glycobiology. 2015 Dec;25(12):1335-49. doi: 10.1093/glycob/cwv058. Epub 2015 Aug 3.
3
Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes.
Biol Rev Camb Philos Soc. 2022 Apr;97(2):732-748. doi: 10.1111/brv.12820. Epub 2021 Dec 6.
4
Influence of protein/glycan interaction on site-specific glycan heterogeneity.
FASEB J. 2017 Oct;31(10):4623-4635. doi: 10.1096/fj.201700403R. Epub 2017 Jul 5.
5
Plant glyco-biotechnology.
Semin Cell Dev Biol. 2018 Aug;80:133-141. doi: 10.1016/j.semcdb.2017.07.005. Epub 2017 Jul 5.
7
Golgi-mediated glycosylation determines residency of the T2 RNase Rny1p in Saccharomyces cerevisiae.
Traffic. 2013 Dec;14(12):1209-27. doi: 10.1111/tra.12122. Epub 2013 Oct 10.
8
Plant protein glycosylation.
Glycobiology. 2016 Sep;26(9):926-939. doi: 10.1093/glycob/cww023. Epub 2016 Feb 23.
9
What can yeast tell us about N-linked glycosylation in the Golgi apparatus?
FEBS Lett. 2001 Jun 8;498(2-3):223-7. doi: 10.1016/s0014-5793(01)02488-7.

引用本文的文献

2
An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition.
Biophys Rev. 2024 Apr 12;16(2):189-218. doi: 10.1007/s12551-024-01188-4. eCollection 2024 Apr.
3
Sugar-coated bullets: Unveiling the enigmatic mystery 'sweet arsenal' in osteoarthritis.
Heliyon. 2024 Mar 11;10(6):e27624. doi: 10.1016/j.heliyon.2024.e27624. eCollection 2024 Mar 30.
4
Analyzing Current Trends and Possible Strategies to Improve Sucrose Isomerases' Thermostability.
Int J Mol Sci. 2023 Sep 25;24(19):14513. doi: 10.3390/ijms241914513.
5
Glycosylation network mapping and site-specific glycan maturation .
iScience. 2022 Oct 20;25(11):105417. doi: 10.1016/j.isci.2022.105417. eCollection 2022 Nov 18.
6
Principles of SARS-CoV-2 glycosylation.
Curr Opin Struct Biol. 2022 Aug;75:102402. doi: 10.1016/j.sbi.2022.102402. Epub 2022 May 19.
7
Glycosylation States on Intact Proteins Determined by NMR Spectroscopy.
Molecules. 2021 Jul 16;26(14):4308. doi: 10.3390/molecules26144308.
8
Glycan-protein interactions determine kinetics of -glycan remodeling.
RSC Chem Biol. 2021 Apr 16;2(3):917-931. doi: 10.1039/d1cb00019e.
9
Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike.
ACS Cent Sci. 2021 Apr 28;7(4):586-593. doi: 10.1021/acscentsci.1c00058. Epub 2021 Mar 31.
10
Substrate specificities and reaction kinetics of the yeast oligosaccharyltransferase isoforms.
J Biol Chem. 2021 Jan-Jun;296:100809. doi: 10.1016/j.jbc.2021.100809. Epub 2021 May 21.

本文引用的文献

1
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. doi: 10.1021/ct400314y. Epub 2013 Aug 20.
2
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.
3
Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies.
J Am Chem Soc. 2013 Jul 3;135(26):9723-32. doi: 10.1021/ja4014375. Epub 2013 Jun 25.
4
Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.
Curr Opin Biotechnol. 2013 Dec;24(6):973-8. doi: 10.1016/j.copbio.2013.03.018. Epub 2013 Apr 20.
5
Function and 3D structure of the N-glycans on glycoproteins.
Int J Mol Sci. 2012;13(7):8398-8429. doi: 10.3390/ijms13078398. Epub 2012 Jul 6.
6
Vertebrate protein glycosylation: diversity, synthesis and function.
Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):448-62. doi: 10.1038/nrm3383.
7
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born.
J Chem Theory Comput. 2012 May 8;8(5):1542-1555. doi: 10.1021/ct200909j. Epub 2012 Mar 26.
10
Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12669-74. doi: 10.1073/pnas.1108455108. Epub 2011 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验