Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark DE 19716, USA.
Curr Opin Biotechnol. 2013 Dec;24(6):973-8. doi: 10.1016/j.copbio.2013.03.018. Epub 2013 Apr 20.
Computational approaches for analyzing dynamic states of metabolic networks provide a practical framework for design, control, and optimization of biotechnological processes. In recent years, two promising modeling approaches have emerged for characterizing transients in cellular metabolism, dynamic metabolic flux analysis (DMFA), and dynamic flux balance analysis (DFBA). Both approaches combine metabolic network analysis based on pseudo steady-state (PSS) assumption for intracellular metabolism with dynamic models for extracellular environment. One strategy to capture dynamics is by combining network analysis with a kinetic model. Predictive models are thus established that can be used to optimize bioprocessing conditions and identify useful genetic manipulations. Alternatively, by combining network analysis with methods for analyzing extracellular time-series data, transients in intracellular metabolic fluxes can be determined and applied for process monitoring and control.
计算方法分析代谢网络的动态状态为生物技术过程的设计、控制和优化提供了一个实用的框架。近年来,有两种有前途的建模方法用于描述细胞代谢中的瞬变,即动态代谢通量分析(DMFA)和动态通量平衡分析(DFBA)。这两种方法都将基于细胞内代谢的准稳态(PSS)假设的代谢网络分析与细胞外环境的动态模型相结合。一种捕获动力学的策略是将网络分析与动力学模型相结合。因此,可以建立预测模型,用于优化生物加工条件和确定有用的遗传操作。或者,通过将网络分析与分析细胞外时间序列数据的方法相结合,可以确定细胞内代谢通量的瞬变,并将其应用于过程监测和控制。