Diop C, Sow T M M, Djitte N, Chidume C E
Gaston Berger University, Saint Louis, Senegal.
Gaston Berger University, Saint Louis, Senegal ; Department of Mathematics, African University of Sciences and Technology, Abuja, Nigeria.
Springerplus. 2015 Jul 28;4:383. doi: 10.1186/s40064-015-1169-2. eCollection 2015.
Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux differentiable norm, and [Formula: see text] its dual space. Let [Formula: see text] be a bounded strongly monotone mapping such that [Formula: see text] For given [Formula: see text] let [Formula: see text] be generated by the algorithm: [Formula: see text]where J is the normalized duality mapping from E into [Formula: see text] and [Formula: see text] is a real sequence in (0, 1) satisfying suitable conditions. Then it is proved that [Formula: see text] converges strongly to the unique point [Formula: see text] Finally, our theorems are applied to the convex minimization problem.
设(E)是一个具有一致Gâteaux可微范数的2 - 一致凸实Banach空间,([公式:见文本])是其对偶空间。设([公式:见文本])是一个有界强单调映射,使得([公式:见文本])。对于给定的([公式:见文本]),设([公式:见文本])由以下算法生成:([公式:见文本])其中(J)是从(E)到([公式:见文本])的归一化对偶映射,([公式:见文本])是((0, 1))中的实序列,满足适当条件。然后证明了([公式:见文本])强收敛到唯一的点([公式:见文本])。最后,我们的定理被应用于凸最小化问题。