Tuğ Orhan
Department of Mathematics Education, Ishik University, 100 meter street, Erbil, Iraq.
J Inequal Appl. 2018;2018(1):9. doi: 10.1186/s13660-017-1606-6. Epub 2018 Jan 8.
The concept of a four-dimensional generalized difference matrix and its domain on some double sequence spaces was recently introduced and studied by Tuğ and Başar (AIP Conference Proceedings, vol. 1759, 2016) and Tuğ (J. Inequal. Appl. 2017(1):149, 2017). In this present paper, as a natural continuation of (J. Inequal. Appl. 2017(1):149, 2017), we introduce new almost null and almost convergent double sequence spaces [Formula: see text] and [Formula: see text] as the four-dimensional generalized difference matrix [Formula: see text] domain in the spaces [Formula: see text] and [Formula: see text], respectively. Firstly, we prove that the spaces [Formula: see text] and [Formula: see text] of double sequences are Banach spaces under some certain conditions. Then we give an inclusion relation of these new almost convergent double sequence spaces. Moreover, we identify the -dual, [Formula: see text]-dual and -dual of the space [Formula: see text]. Finally, we characterize some new matrix classes [Formula: see text], [Formula: see text], and we complete this work with some significant results.
图格和巴萨尔(《AIP会议论文集》,第1759卷,2016年)以及图格(《不等式及其应用杂志》2017(1):149,2017年)最近引入并研究了四维广义差分矩阵的概念及其在一些双序列空间上的定义域。在本文中,作为(《不等式及其应用杂志》2017(1):149,2017年)的自然延续,我们分别引入了新的几乎零和几乎收敛双序列空间[公式:见原文]和[公式:见原文],作为四维广义差分矩阵[公式:见原文]在空间[公式:见原文]和[公式:见原文]中的定义域。首先,我们证明了在某些特定条件下,双序列空间[公式:见原文]和[公式:见原文]是巴拿赫空间。然后我们给出了这些新的几乎收敛双序列空间的包含关系。此外,我们确定了空间[公式:见原文]的β -对偶、α -对偶和γ -对偶。最后,我们刻画了一些新的矩阵类[公式:见原文]、[公式:见原文],并以一些重要结果完成了这项工作。