Suppr超能文献

关于几乎可和的二重序列空间

On almost -summable double sequence spaces.

作者信息

Tuğ Orhan

机构信息

Department of Mathematics Education, Ishik University, 100 meter street, Erbil, Iraq.

出版信息

J Inequal Appl. 2018;2018(1):9. doi: 10.1186/s13660-017-1606-6. Epub 2018 Jan 8.

Abstract

The concept of a four-dimensional generalized difference matrix and its domain on some double sequence spaces was recently introduced and studied by Tuğ and Başar (AIP Conference Proceedings, vol. 1759, 2016) and Tuğ (J. Inequal. Appl. 2017(1):149, 2017). In this present paper, as a natural continuation of (J. Inequal. Appl. 2017(1):149, 2017), we introduce new almost null and almost convergent double sequence spaces [Formula: see text] and [Formula: see text] as the four-dimensional generalized difference matrix [Formula: see text] domain in the spaces [Formula: see text] and [Formula: see text], respectively. Firstly, we prove that the spaces [Formula: see text] and [Formula: see text] of double sequences are Banach spaces under some certain conditions. Then we give an inclusion relation of these new almost convergent double sequence spaces. Moreover, we identify the -dual, [Formula: see text]-dual and -dual of the space [Formula: see text]. Finally, we characterize some new matrix classes [Formula: see text], [Formula: see text], and we complete this work with some significant results.

摘要

图格和巴萨尔(《AIP会议论文集》,第1759卷,2016年)以及图格(《不等式及其应用杂志》2017(1):149,2017年)最近引入并研究了四维广义差分矩阵的概念及其在一些双序列空间上的定义域。在本文中,作为(《不等式及其应用杂志》2017(1):149,2017年)的自然延续,我们分别引入了新的几乎零和几乎收敛双序列空间[公式:见原文]和[公式:见原文],作为四维广义差分矩阵[公式:见原文]在空间[公式:见原文]和[公式:见原文]中的定义域。首先,我们证明了在某些特定条件下,双序列空间[公式:见原文]和[公式:见原文]是巴拿赫空间。然后我们给出了这些新的几乎收敛双序列空间的包含关系。此外,我们确定了空间[公式:见原文]的β -对偶、α -对偶和γ -对偶。最后,我们刻画了一些新的矩阵类[公式:见原文]、[公式:见原文],并以一些重要结果完成了这项工作。

相似文献

1
On almost -summable double sequence spaces.
J Inequal Appl. 2018;2018(1):9. doi: 10.1186/s13660-017-1606-6. Epub 2018 Jan 8.
2
Four-dimensional generalized difference matrix and some double sequence spaces.
J Inequal Appl. 2017;2017(1):149. doi: 10.1186/s13660-017-1423-y. Epub 2017 Jun 24.
3
On some binomial [Formula: see text]-difference sequence spaces.
J Inequal Appl. 2017;2017(1):194. doi: 10.1186/s13660-017-1470-4. Epub 2017 Aug 22.
4
Some normed binomial difference sequence spaces related to the [Formula: see text] spaces.
J Inequal Appl. 2017;2017(1):128. doi: 10.1186/s13660-017-1401-4. Epub 2017 Jun 2.
5
Constructive techniques for zeros of monotone mappings in certain Banach spaces.
Springerplus. 2015 Jul 28;4:383. doi: 10.1186/s40064-015-1169-2. eCollection 2015.
6
Sequence spaces [Formula: see text] and [Formula: see text] with application in clustering.
J Inequal Appl. 2017;2017(1):63. doi: 10.1186/s13660-017-1333-z. Epub 2017 Mar 21.
7
A new inequality for the Riemann-Stieltjes integrals driven by irregular signals in Banach spaces.
J Inequal Appl. 2018;2018(1):20. doi: 10.1186/s13660-018-1611-4. Epub 2018 Jan 15.
8
Some new lacunary statistical convergence with ideals.
J Inequal Appl. 2017;2017(1):15. doi: 10.1186/s13660-016-1284-9. Epub 2017 Jan 10.
9
Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces.
J Inequal Appl. 2018;2018(1):34. doi: 10.1186/s13660-018-1621-2. Epub 2018 Feb 7.
10
[Formula: see text]-statistical convergence of order for double sequences.
J Inequal Appl. 2017;2017(1):246. doi: 10.1186/s13660-017-1512-y. Epub 2017 Oct 4.

本文引用的文献

1
Four-dimensional generalized difference matrix and some double sequence spaces.
J Inequal Appl. 2017;2017(1):149. doi: 10.1186/s13660-017-1423-y. Epub 2017 Jun 24.
2
On Non-Factorable Transformations of Double Sequences.
Proc Natl Acad Sci U S A. 1933 May;19(5):564-7. doi: 10.1073/pnas.19.5.564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验