Borek Weronika E, Groocock Lynda M, Samejima Itaru, Zou Juan, de Lima Alves Flavia, Rappsilber Juri, Sawin Kenneth E
Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
1] Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK [2] Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany.
Nat Commun. 2015 Aug 5;6:7929. doi: 10.1038/ncomms8929.
Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation 'switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation.
微管成核在真核细胞周期中受到高度调控,但其潜在的分子机制在很大程度上仍不清楚。在裂殖酵母粟酒裂殖酵母的有丝分裂过程中,细胞质微管成核与核内有丝分裂纺锤体组装同时停止。细胞质成核依赖于Mto1/2复合体,该复合体结合并激活γ-微管蛋白复合体,还将γ-微管蛋白复合体募集到中心体(纺锤极体)和非中心体位点。在这里,我们表明Mto1/2复合体在有丝分裂期间解体,与Mto2蛋白的过度磷酸化同时发生。通过定位和突变多个Mto2磷酸化位点,我们生成了具有增强的Mto1/2复合体稳定性、与γ-微管蛋白复合体的相互作用以及微管成核活性的mto2-磷酸突变菌株。一个有24个磷酸化位点突变为丙氨酸的突变体mto2[24A],即使在有丝分裂细胞中也保持间期样行为。这提供了对磷酸化如何在细胞周期中“关闭”微管成核复合体的分子水平理解,更广泛地说,阐明了调节非中心体微管成核的机制。