Ta Duy Tien, Redeker Erik Steen, Billen Brecht, Reekmans Gunter, Sikulu Josephine, Noben Jean-Paul, Guedens Wanda, Adriaensens Peter
Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium Faculty of Food Technology and Biotechnology, Can Tho University of Technology, Can Tho, Vietnam.
Maastricht Science Programme, Maastricht University, Maastricht 6200 MD, The Netherlands.
Protein Eng Des Sel. 2015 Oct;28(10):351-63. doi: 10.1093/protein/gzv032. Epub 2015 Aug 4.
In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications.
在本研究中,研究了几种表达策略,以开发一种通用、高产且高效的方案,通过内含肽介导的蛋白质连接(IPL)技术,生产在其C末端修饰有可点击炔烃功能的纳米抗体。为此,靶向血管细胞粘附分子1(NbVCAM1)的纳米抗体被用作主力。该方案的亮点可归因于纳米抗体-内含肽-几丁质结合域融合蛋白在大肠杆菌SHuffle(®) T7细胞中的细胞质表达,其具有C末端延伸,即LEY、EFLEY或His6间隔肽,在常用的Luria-Bertani培养基中。这些因素的组合导致了高产率(高达22 mg/l培养物)以及通过IPL对C末端修饰的纳米抗体几乎完全的炔基化效率。在EnPresso(®)生长系统中,该产量甚至可以提高到约45 mg/l,但这种方法更昂贵且耗时。所得的炔基化纳米抗体对重组人VCAM1保留了优异的结合能力。所提出的方案具有时间和成本效益,这使得通用炔基化纳米抗体的可行生产扩大成为可能。大量位点特异性修饰的纳米抗体的生产为需要均匀定向纳米抗体偶联的新生物表面应用铺平了道路。前瞻性地,炔基化纳米抗体可以与多种含叠氮化物的对应物共价偶联,例如用于众多创新应用的造影剂、颗粒或表面。