Sutton Nora B, Atashgahi Siavash, Saccenti Edoardo, Grotenhuis Tim, Smidt Hauke, Rijnaarts Huub H M
Environmental Technology, Wageningen University, Wageningen, The Netherlands.
Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
PLoS One. 2015 Aug 5;10(8):e0134615. doi: 10.1371/journal.pone.0134615. eCollection 2015.
While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.
虽然原位化学氧化常用于修复受四氯乙烯(PCE)污染的场地,但对于其对微生物组成和有机卤化物呼吸(OHR)活性的影响却知之甚少。在此,我们通过定量PCR研究了高锰酸盐氧化对OHR速率、有机卤化物呼吸细菌(OHRB)丰度和还原脱卤酶(rdh)基因的影响,并通过16S rRNA基因测序研究了微生物群落组成。用低(25 μmol)、中(50 μmol)或高(100 μmol)剂量的高锰酸盐或不进行氧化剂处理(生物对照)对一个PCE降解富集物进行反复处理。与生物对照相比,低剂量和中剂量处理导致更高的OHR速率以及几种OHRB和rdh基因的富集。降解速率的提高可归因于以下因素的富集:(1)能够将锰氧化物作为末端电子受体利用的OHRB,以及(2)梭菌目和δ变形菌门中可能通过提供必需辅因子来支持OHRB的非脱氯群落成员。相比之下,高剂量高锰酸盐处理破坏了顺式二氯乙烯之后的脱氯过程,与生物对照相比,所有检测到的OHRB和rdh基因丰度至少降低了2 - 4个数量级。高剂量高锰酸盐处理导致微生物群落显著分化,与能够进行异化锰还原的弯曲杆菌目和海洋螺菌目相关的生物体丰度增加,而OHRB假定支持者的丰度降低。尽管在最后一次100 μmol高锰酸盐处理后的213天内,归类于支持OHR的梭菌目和OHRB内的操作分类单元(OTU)丰度增加,但在三个微宇宙中的一个中仅观察到有限的PCE脱氯再生,这表明强化学氧化处理可能会不可逆地破坏OHR。总体而言,这项对高锰酸盐处理导致的微生物组成和活性剂量依赖性变化的详细研究,为化学氧化时OHR刺激或破坏的机制提供了见解。