Suppr超能文献

利用组学技术研究细胞信号转导

Studying Cellular Signal Transduction with OMIC Technologies.

作者信息

Landry Benjamin D, Clarke David C, Lee Michael J

机构信息

Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada.

出版信息

J Mol Biol. 2015 Oct 23;427(21):3416-40. doi: 10.1016/j.jmb.2015.07.021. Epub 2015 Aug 3.

Abstract

In the gulf between genotype and phenotype exists proteins and, in particular, protein signal transduction systems. These systems use a relatively limited parts list to respond to a much longer list of extracellular, environmental, and/or mechanical cues with rapidity and specificity. Most signaling networks function in a highly non-linear and often contextual manner. Furthermore, these processes occur dynamically across space and time. Because of these complexities, systems and "OMIC" approaches are essential for the study of signal transduction. One challenge in using OMIC-scale approaches to study signaling is that the "signal" can take different forms in different situations. Signals are encoded in diverse ways such as protein-protein interactions, enzyme activities, localizations, or post-translational modifications to proteins. Furthermore, in some cases, signals may be encoded only in the dynamics, duration, or rates of change of these features. Accordingly, systems-level analyses of signaling may need to integrate multiple experimental and/or computational approaches. As the field has progressed, the non-triviality of integrating experimental and computational analyses has become apparent. Successful use of OMIC methods to study signaling will require the "right" experiments and the "right" modeling approaches, and it is critical to consider both in the design phase of the project. In this review, we discuss common OMIC and modeling approaches for studying signaling, emphasizing the philosophical and practical considerations for effectively merging these two types of approaches to maximize the probability of obtaining reliable and novel insights into signaling biology.

摘要

在基因型和表型之间的鸿沟中存在着蛋白质,尤其是蛋白质信号转导系统。这些系统利用相对有限的元件清单,快速且特异地响应一系列长得多的细胞外、环境和/或机械信号。大多数信号网络以高度非线性且通常依赖于上下文的方式发挥作用。此外,这些过程在空间和时间上动态发生。由于这些复杂性,系统和“组学”方法对于信号转导研究至关重要。使用组学规模方法研究信号转导的一个挑战在于,“信号”在不同情况下可能呈现不同形式。信号通过多种方式编码,如蛋白质 - 蛋白质相互作用、酶活性、定位或蛋白质的翻译后修饰。此外,在某些情况下,信号可能仅编码于这些特征的动态变化、持续时间或变化速率中。因此,信号转导的系统层面分析可能需要整合多种实验和/或计算方法。随着该领域的发展,整合实验和计算分析的难度已变得明显。成功使用组学方法研究信号转导需要“正确”的实验和“正确”的建模方法,并且在项目设计阶段同时考虑这两者至关重要。在本综述中,我们讨论用于研究信号转导的常见组学和建模方法,强调有效融合这两种方法以最大程度提高获得关于信号转导生物学可靠且新颖见解可能性的哲学和实际考量。

相似文献

1
Studying Cellular Signal Transduction with OMIC Technologies.
J Mol Biol. 2015 Oct 23;427(21):3416-40. doi: 10.1016/j.jmb.2015.07.021. Epub 2015 Aug 3.
2
Introduction: Cancer Gene Networks.
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
3
Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks.
Methods Enzymol. 2017;589:133-170. doi: 10.1016/bs.mie.2017.01.016. Epub 2017 Mar 7.
5
Computational approaches for analyzing information flow in biological networks.
Sci Signal. 2012 Apr 17;5(220):re1. doi: 10.1126/scisignal.2002961.
6
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Foodomics as part of the host-microbiota-exposome interplay.
J Proteomics. 2016 Sep 16;147:3-20. doi: 10.1016/j.jprot.2016.04.033. Epub 2016 Apr 26.
8
Quantitative proteomics and its applications for systems biology.
Biochemistry (Mosc). 2006 Oct;71(10):1060-72. doi: 10.1134/s0006297906100026.
9
Proteogenomics and systems biology: quest for the ultimate missing parts.
Expert Rev Proteomics. 2010 Feb;7(1):65-77. doi: 10.1586/epr.09.104.
10
Modeling signaling networks using high-throughput phospho-proteomics.
Adv Exp Med Biol. 2012;736:19-57. doi: 10.1007/978-1-4419-7210-1_2.

引用本文的文献

1
Analyzing signaling activity and function in hematopoietic cells.
J Exp Med. 2021 Jul 5;218(7). doi: 10.1084/jem.20201546. Epub 2021 Jun 15.
2
Exploiting Synthetic Lethality and Network Biology to Overcome EGFR Inhibitor Resistance in Lung Cancer.
J Mol Biol. 2017 Jun 16;429(12):1767-1786. doi: 10.1016/j.jmb.2017.04.018. Epub 2017 May 3.
3
Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks.
Methods Enzymol. 2017;589:133-170. doi: 10.1016/bs.mie.2017.01.016. Epub 2017 Mar 7.

本文引用的文献

1
Mass spectrometrists should search only for peptides they care about.
Nat Methods. 2015 Jul;12(7):605-8. doi: 10.1038/nmeth.3450.
2
Application guide for omics approaches to cell signaling.
Nat Chem Biol. 2015 Jun;11(6):387-97. doi: 10.1038/nchembio.1809. Epub 2015 May 15.
3
An analysis of critical factors for quantitative immunoblotting.
Sci Signal. 2015 Apr 7;8(371):rs2. doi: 10.1126/scisignal.2005966.
4
Criteria for biological reproducibility: what does "n" mean?
Sci Signal. 2015 Apr 7;8(371):fs7. doi: 10.1126/scisignal.aab1125.
6
Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy.
Cell. 2015 Feb 26;160(5):977-989. doi: 10.1016/j.cell.2015.01.042.
7
Points of significance: Sources of variation.
Nat Methods. 2015 Jan;12(1):5-6. doi: 10.1038/nmeth.3224.
8
Interferon α/β Enhances the Cytotoxic Response of MEK Inhibition in Melanoma.
Mol Cell. 2015 Mar 5;57(5):784-796. doi: 10.1016/j.molcel.2014.12.030. Epub 2015 Feb 12.
9
Reproducibility: Standardize antibodies used in research.
Nature. 2015 Feb 5;518(7537):27-9. doi: 10.1038/518027a.
10
A versatile platform to analyze low-affinity and transient protein-protein interactions in living cells in real time.
Cell Rep. 2014 Dec 11;9(5):1946-1958. doi: 10.1016/j.celrep.2014.10.058. Epub 2014 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验