Suppr超能文献

保留的DNA损伤检查点途径可预防长期1型糖尿病的并发症。

Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes.

作者信息

Bhatt Shweta, Gupta Manoj K, Khamaisi Mogher, Martinez Rachael, Gritsenko Marina A, Wagner Bridget K, Guye Patrick, Busskamp Volker, Shirakawa Jun, Wu Gongxiong, Liew Chong Wee, Clauss Therese R, Valdez Ivan, El Ouaamari Abdelfattah, Dirice Ercument, Takatani Tomozumi, Keenan Hillary A, Smith Richard D, Church George, Weiss Ron, Wagers Amy J, Qian Wei-Jun, King George L, Kulkarni Rohit N

机构信息

Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.

Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.

出版信息

Cell Metab. 2015 Aug 4;22(2):239-52. doi: 10.1016/j.cmet.2015.07.015.

Abstract

The mechanisms underlying the development of complications in type 1 diabetes (T1D) are poorly understood. Disease modeling of induced pluripotent stem cells (iPSCs) from patients with longstanding T1D (disease duration ≥ 50 years) with severe (Medalist +C) or absent to mild complications (Medalist -C) revealed impaired growth, reprogramming, and differentiation in Medalist +C. Genomics and proteomics analyses suggested differential regulation of DNA damage checkpoint proteins favoring protection from cellular apoptosis in Medalist -C. In silico analyses showed altered expression patterns of DNA damage checkpoint factors among the Medalist groups to be targets of miR200, whose expression was significantly elevated in Medalist +C serum. Notably, neurons differentiated from Medalist +C iPSCs exhibited enhanced susceptibility to genotoxic stress that worsened upon miR200 overexpression. Furthermore, knockdown of miR200 in Medalist +C fibroblasts and iPSCs rescued checkpoint protein expression and reduced DNA damage. We propose miR200-regulated DNA damage checkpoint pathway as a potential therapeutic target for treating complications of diabetes.

摘要

1型糖尿病(T1D)并发症发生的潜在机制目前仍知之甚少。对患有长期T1D(病程≥50年)且伴有严重并发症(金牌+C组)或无至轻度并发症(金牌-C组)患者的诱导多能干细胞(iPSC)进行疾病建模,结果显示金牌+C组细胞的生长、重编程和分化受损。基因组学和蛋白质组学分析表明,DNA损伤检查点蛋白的差异调节有利于金牌-C组细胞免受细胞凋亡。计算机模拟分析显示,金牌组之间DNA损伤检查点因子的表达模式改变是miR200的作用靶点,miR200在金牌+C组血清中的表达显著升高。值得注意的是,从金牌+C组iPSC分化而来的神经元对基因毒性应激的敏感性增强,在miR200过表达时情况恶化。此外,在金牌+C组成纤维细胞和iPSC中敲低miR200可挽救检查点蛋白表达并减少DNA损伤。我们提出,miR200调节的DNA损伤检查点途径可能是治疗糖尿病并发症的潜在治疗靶点。

相似文献

1
2
Type 1 Diabetes and MicroRNA: It's Complicated.
Cell Metab. 2015 Aug 4;22(2):202-3. doi: 10.1016/j.cmet.2015.07.018.
3
is regulated by miR-135a and involved in DNA damage repair during mouse cellular reprogramming.
Aging (Albany NY). 2020 Apr 26;12(8):7431-7447. doi: 10.18632/aging.103090.
5
Induced pluripotent stem cells from ataxia-telangiectasia recapitulate the cellular phenotype.
Stem Cells Transl Med. 2012 Jul;1(7):523-35. doi: 10.5966/sctm.2012-0024. Epub 2012 Jun 28.
8
Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes.
Stem Cells Transl Med. 2012 Jun;1(6):451-61. doi: 10.5966/sctm.2011-0044. Epub 2012 May 30.
9
10
DNA damage response in neonatal and adult stromal cells compared with induced pluripotent stem cells.
Stem Cells Transl Med. 2015 Jun;4(6):576-89. doi: 10.5966/sctm.2014-0209. Epub 2015 Apr 21.

引用本文的文献

1
The role of DNA damage in diabetic complications.
Nat Rev Endocrinol. 2024 Nov;20(11):629-630. doi: 10.1038/s41574-024-01038-z.
2
Unraveling the Enigma of Organismal Death: Insights, Implications, and Unexplored Frontiers.
Physiology (Bethesda). 2024 Sep 1;39(5):0. doi: 10.1152/physiol.00004.2024. Epub 2024 Apr 16.
3
Protective Factors and the Pathogenesis of Complications in Diabetes.
Endocr Rev. 2024 Mar 4;45(2):227-252. doi: 10.1210/endrev/bnad030.
4
Genetics of diabetes.
World J Diabetes. 2023 Jun 15;14(6):656-679. doi: 10.4239/wjd.v14.i6.656.
5
Diabetic Pneumopathy-A New Diabetes-Associated Complication: Mechanisms, Consequences and Treatment Considerations.
Front Endocrinol (Lausanne). 2021 Nov 25;12:765201. doi: 10.3389/fendo.2021.765201. eCollection 2021.
6
Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control.
Mol Ther. 2022 Jan 5;30(1):341-354. doi: 10.1016/j.ymthe.2021.09.004. Epub 2021 Sep 14.
8
Discoveries from the study of longstanding type 1 diabetes.
Diabetologia. 2021 Jun;64(6):1189-1200. doi: 10.1007/s00125-021-05403-9. Epub 2021 Mar 4.
9
Leptin Receptor Signaling Regulates Protein Synthesis Pathways and Neuronal Differentiation in Pluripotent Stem Cells.
Stem Cell Reports. 2020 Nov 10;15(5):1067-1079. doi: 10.1016/j.stemcr.2020.10.001. Epub 2020 Oct 29.
10
A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes.
Cell Metab. 2020 Nov 3;32(5):844-859.e5. doi: 10.1016/j.cmet.2020.08.007. Epub 2020 Sep 3.

本文引用的文献

1
Special delivery: microRNA-200-containing extracellular vesicles provide metastatic message to distal tumor cells.
J Clin Invest. 2014 Dec;124(12):5107-8. doi: 10.1172/JCI79191. Epub 2014 Nov 17.
2
Metabolic modulation of chromatin: implications for DNA repair and genomic integrity.
Front Genet. 2013 Sep 17;4:182. doi: 10.3389/fgene.2013.00182.
3
MicroRNAs: potential mediators and biomarkers of diabetic complications.
Free Radic Biol Med. 2013 Sep;64:85-94. doi: 10.1016/j.freeradbiomed.2013.06.009. Epub 2013 Jun 12.
4
Glucose metabolism, hyperosmotic stress, and reprogramming of somatic cells.
Mol Biotechnol. 2013 Oct;55(2):169-78. doi: 10.1007/s12033-013-9668-2.
5
MicroRNAs as pharmacological targets in endothelial cell function and dysfunction.
Pharmacol Res. 2013 Sep;75:15-27. doi: 10.1016/j.phrs.2013.04.002. Epub 2013 Apr 18.
6
Chromatin remodeling at DNA double-strand breaks.
Cell. 2013 Mar 14;152(6):1344-54. doi: 10.1016/j.cell.2013.02.011.
7
Vascular complications of diabetes: mechanisms of injury and protective factors.
Cell Metab. 2013 Jan 8;17(1):20-33. doi: 10.1016/j.cmet.2012.11.012.
8
Mechanisms of diabetic complications.
Physiol Rev. 2013 Jan;93(1):137-88. doi: 10.1152/physrev.00045.2011.
9
Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair.
Mol Cell. 2012 Dec 14;48(5):723-33. doi: 10.1016/j.molcel.2012.09.026. Epub 2012 Oct 30.
10
The histone variant macroH2A1.1 is recruited to DSBs through a mechanism involving PARP1.
FEBS Lett. 2012 Nov 2;586(21):3920-5. doi: 10.1016/j.febslet.2012.09.030. Epub 2012 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验