Suppr超能文献

过度捕捞、快速增长和气候多变性增加了渔业崩溃的风险。

Fishing, fast growth and climate variability increase the risk of collapse.

作者信息

Pinsky Malin L, Byler David

机构信息

Department of Ecology, Evolution, and Natural Resources and Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA

Department of Operations Research and Financial Engineering, Princeton University, Charlton Street, Princeton, NJ 08544, USA.

出版信息

Proc Biol Sci. 2015 Aug 22;282(1813):20151053. doi: 10.1098/rspb.2015.1053.

Abstract

Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species.

摘要

世界各地的物种数量都出现了锐减,一个关键问题是为何有些种群比其他种群更易受到影响。传统保护生物学以及陆地物种的相关证据表明,生长缓慢的种群面临的风险最大,但气候变率与捕捞动态之间的相互作用可能会改变甚至扭转这一模式。在此,我们在全球范围内对这一假设进行检验。我们使用增强回归树来分析捕捞、物种特性以及气候变率对全球154个海洋鱼类种群数量锐减风险(降至固定阈值以下)的影响。解释种群数量锐减的最重要因素是过度捕捞的程度,而过度捕捞的持续时间则最能解释长期资源枯竭的情况。然而,生长速度快是第二重要的风险因素。生长速度快的种群以及处于多变环境中的种群对过度捕捞尤为敏感,与经历过度捕捞的生长缓慢的物种相比,生长速度快的物种数量锐减的风险增加了两倍多。我们几乎没有发现证据表明,在没有过度捕捞的情况下,过去六十年里气候变率或生长速度快本身会导致种群数量锐减。加大力度迅速调整捕捞压力以应对气候导致的生产力下降,有助于避免未来的种群数量锐减,尤其是对于生长速度快的物种。

相似文献

1
Fishing, fast growth and climate variability increase the risk of collapse.
Proc Biol Sci. 2015 Aug 22;282(1813):20151053. doi: 10.1098/rspb.2015.1053.
2
Opportunities for climate-risk reduction through effective fisheries management.
Glob Chang Biol. 2018 Nov;24(11):5149-5163. doi: 10.1111/gcb.14390. Epub 2018 Aug 23.
5
Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
Adv Mar Biol. 2009;56:275-363. doi: 10.1016/S0065-2881(09)56004-X.
8
Pollution, habitat loss, fishing, and climate change as critical threats to penguins.
Conserv Biol. 2015 Feb;29(1):31-41. doi: 10.1111/cobi.12349. Epub 2014 Aug 7.
10
The future of fishes and fisheries in the changing oceans.
J Fish Biol. 2018 Mar;92(3):790-803. doi: 10.1111/jfb.13558.

引用本文的文献

1
Should Regional Species Loss Be Faster or Slower Than Local Loss? It Depends on Density-Dependent Rate of Death.
Ecol Evol. 2025 Mar 27;15(4):e71162. doi: 10.1002/ece3.71162. eCollection 2025 Apr.
2
The potential impacts of exploitation on the ecological roles of fish species targeted by fisheries: A multifunctional perspective.
PLoS One. 2024 Oct 29;19(10):e0308602. doi: 10.1371/journal.pone.0308602. eCollection 2024.
4
Ternary network models for disturbed ecosystems.
R Soc Open Sci. 2022 Oct 26;9(10):220619. doi: 10.1098/rsos.220619. eCollection 2022 Oct.
5
Assessing the vulnerability of marine life to climate change in the Pacific Islands region.
PLoS One. 2022 Jul 8;17(7):e0270930. doi: 10.1371/journal.pone.0270930. eCollection 2022.
7
Environmental drivers of reef manta ray (Mobula alfredi) visitation patterns to key aggregation habitats in the Maldives.
PLoS One. 2021 Jun 23;16(6):e0252470. doi: 10.1371/journal.pone.0252470. eCollection 2021.
8
Fine-scale oceanographic drivers of reef manta ray () visitation patterns at a feeding aggregation site.
Ecol Evol. 2021 Mar 24;11(9):4588-4604. doi: 10.1002/ece3.7357. eCollection 2021 May.
10
Origin of exponential growth in nonlinear reaction networks.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27795-27804. doi: 10.1073/pnas.2013061117. Epub 2020 Oct 22.

本文引用的文献

2
The biodiversity of species and their rates of extinction, distribution, and protection.
Science. 2014 May 30;344(6187):1246752. doi: 10.1126/science.1246752.
3
Climate, fishing, and fluctuations of sardine and anchovy in the California Current.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13672-7. doi: 10.1073/pnas.1305733110. Epub 2013 Jul 8.
4
Resilience and recovery of overexploited marine populations.
Science. 2013 Apr 19;340(6130):347-9. doi: 10.1126/science.1230441.
5
Frequency and intensity of productivity regime shifts in marine fish stocks.
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1779-84. doi: 10.1073/pnas.1214879110. Epub 2013 Jan 15.
6
Does increasing mortality change the response of fish populations to environmental fluctuations?
Ecol Lett. 2012 Jul;15(7):658-65. doi: 10.1111/j.1461-0248.2012.01781.x. Epub 2012 Apr 10.
8
Global population trajectories of tunas and their relatives.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20650-5. doi: 10.1073/pnas.1107743108. Epub 2011 Dec 5.
9
Unexpected patterns of fisheries collapse in the world's oceans.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8317-22. doi: 10.1073/pnas.1015313108. Epub 2011 May 2.
10
Fluctuations of fish populations and the magnifying effects of fishing.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7075-80. doi: 10.1073/pnas.1100334108. Epub 2011 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验