Suppr超能文献

基底脑氧化应激和硝化应激水平受到超氧化物歧化酶2和p53之间相互作用的精细调节。

Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53.

作者信息

Barone Eugenio, Cenini Giovanna, Di Domenico Fabio, Noel Teresa, Wang Chi, Perluigi Marzia, St Clair Daret K, Butterfield D Allan

机构信息

Department of Biochemical Sciences "A. Rossi-Fanelli,", Sapienza University of Rome, Roma, Italy.

Facultad de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Providencia, Santiago, Chile.

出版信息

J Neurosci Res. 2015 Nov;93(11):1728-39. doi: 10.1002/jnr.23627. Epub 2015 Aug 6.

Abstract

Superoxide dismutases (SODs) are the primary reactive oxygen species (ROS)-scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals O2- to H2O2 and molecular oxygen (O2). Among the three forms of SOD identified, manganese-containing SOD (MnSOD, SOD2) is a homotetramer located wholly in the mitochondrial matrix. Because of the SOD2 strategic location, it represents the first mechanism of defense against the augmentation of ROS/reactive nitrogen species levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2(-/+) ) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in different brain isolated cellular fractions (i.e., mitochondrial, nuclear, cytosolic) as well as in the whole-brain homogenate. Furthermore, because of the known interaction between SOD2 and p53 protein, this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of mice carrying the double mutation (p53(-/-) × SOD2(-/+) and p53(-/-) × TgSOD2). We show that each mutation affects mitochondrial, nuclear, and cytosolic oxidative/nitrative stress basal levels differently, but, overall, no change or reduction of oxidative/nitrative stress levels was found in the whole-brain homogenate. The analysis of well-known antioxidant systems such as thioredoxin-1 and Nrf2/HO-1/BVR-A suggests their potential role in the maintenance of the cellular redox homeostasis in the presence of changes of SOD2 and/or p53 protein levels.

摘要

超氧化物歧化酶(SOD)是细胞内主要的活性氧(ROS)清除酶,催化超氧阴离子自由基O2- 歧化为H2O2和分子氧(O2)。在已鉴定出的三种SOD形式中,含锰SOD(MnSOD,SOD2)是一种同四聚体,完全位于线粒体基质中。由于SOD2的关键位置,它代表了抵御线粒体中ROS/活性氮物质水平升高以防止进一步损伤的第一道防线。本研究旨在了解MnSOD部分缺失(SOD2(-/+))或过表达(TgSOD2)对不同脑部分离细胞组分(即线粒体、细胞核、细胞质)以及全脑匀浆中氧化/硝化应激基础水平的影响。此外,由于已知SOD2与p53蛋白之间存在相互作用,本研究旨在阐明双突变对携带双突变(p53(-/-)×SOD2(-/+)和p53(-/-)×TgSOD2)小鼠大脑中氧化/硝化应激水平的影响。我们发现,每种突变对线粒体、细胞核和细胞质氧化/硝化应激基础水平的影响各不相同,但总体而言,全脑匀浆中氧化/硝化应激水平未发现变化或降低。对诸如硫氧还蛋白-1和Nrf2/HO-1/BVR-A等著名抗氧化系统的分析表明,在SOD2和/或p53蛋白水平发生变化时,它们在维持细胞氧化还原稳态中具有潜在作用。

相似文献

4
Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD.
Free Radic Res. 2016;50(5):570-84. doi: 10.3109/10715762.2016.1155708.
5
Switch of Mitochondrial Superoxide Dismutase into a Prooxidant Peroxidase in Manganese-Deficient Cells and Mice.
Cell Chem Biol. 2018 Apr 19;25(4):413-425.e6. doi: 10.1016/j.chembiol.2018.01.007.
6
Glutathione peroxidase contributes with heme oxygenase-1 to redox balance in mouse brain during the course of cerebral malaria.
Biochim Biophys Acta. 2013 Dec;1832(12):2009-18. doi: 10.1016/j.bbadis.2013.07.010. Epub 2013 Jul 18.
10
The p53-p66shc-Manganese Superoxide Dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species.
Int J Biochem Cell Biol. 2009 May;41(5):1002-5. doi: 10.1016/j.biocel.2008.10.011. Epub 2008 Oct 18.

引用本文的文献

3
Mitochondrial Oxidative and Nitrosative Stress and Alzheimer Disease.
Antioxidants (Basel). 2020 Sep 2;9(9):818. doi: 10.3390/antiox9090818.
4
Heme Oxygenase-1 in Central Nervous System Malignancies.
J Clin Med. 2020 May 21;9(5):1562. doi: 10.3390/jcm9051562.
5
Proteostasis Failure in Neurodegenerative Diseases: Focus on Oxidative Stress.
Oxid Med Cell Longev. 2020 Mar 27;2020:5497046. doi: 10.1155/2020/5497046. eCollection 2020.

本文引用的文献

1
Oxidative and nitrative stress in neurodegeneration.
Neurobiol Dis. 2015 Dec;84:4-21. doi: 10.1016/j.nbd.2015.04.020. Epub 2015 May 27.
2
Biliverdin Reductase-A correlates with inducible nitric oxide synthasein in atorvastatin treated aged canine brain.
Neural Regen Res. 2013 Jul 25;8(21):1925-37. doi: 10.3969/j.issn.1673-5374.2013.21.001.
3
Cellular mechanisms and physiological consequences of redox-dependent signalling.
Nat Rev Mol Cell Biol. 2014 Jun;15(6):411-21. doi: 10.1038/nrm3801.
4
Oxidative damage and amyloid-β metabolism in brain regions of the longest-lived rodents.
J Neurosci Res. 2014 Feb;92(2):195-205. doi: 10.1002/jnr.23320. Epub 2013 Nov 22.
5
The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation.
Neurobiol Dis. 2014 Feb;62:144-59. doi: 10.1016/j.nbd.2013.09.018. Epub 2013 Oct 2.
7
SOD2 in mitochondrial dysfunction and neurodegeneration.
Free Radic Biol Med. 2013 Sep;62:4-12. doi: 10.1016/j.freeradbiomed.2013.05.027. Epub 2013 May 29.
9
Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro.
Neurosci Lett. 2012 Jun 19;518(2):101-5. doi: 10.1016/j.neulet.2012.04.062. Epub 2012 May 2.
10
Hormesis: why it is important to biogerontologists.
Biogerontology. 2012 Jun;13(3):215-35. doi: 10.1007/s10522-012-9374-7. Epub 2012 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验