Chung Derrick A, Yang Rui Rain, Verma Dave K, Luo Jun
a Workplace Safety and Insurance Board (WSIB) , Toronto , Ontario , Canada.
b Ontario Ministry of Labour , North York , Ontario , Canada.
J Occup Environ Hyg. 2015;12(12):855-65. doi: 10.1080/15459624.2015.1072630.
This article outlines a hierarchy of data required for retrospective exposure assessment for occupational disease of an individual worker. It then outlines in a step-wise manner how trend analysis using a relatively large exposure database can be used to estimate such exposure. The process of how a large database containing exposure measurements can be prepared for estimating historic occupational exposures of individual workers in relation to their illnesses is described. The asbestos subset from a large government collected air monitoring database called Medical Surveillance (MESU) was selected to illustrate the cleaning and analysis processes. After unidentifiable values were removed, the cleaned dataset was examined for possible sources of variability such as changes to sampling protocol. Limit of detection (LOD) values were substituted for all non-detectable values prior to the calculation of descriptive statistic using left censored analysis methods (i.e., maximum likelihood estimation (MLE), Kaplan Meier (KM), and simple substitution). The JoinPoint Regression Program was used to perform trend analysis and calculate an annual percentage change (APC) value for the available sampling period. An asbestos case study is presented to illustrate how the APC can then be combined with more recent job and/or process specific exposure data to estimate historic levels. The MESU asbestos dataset contained 1,610 samples from 1984-1995. An average of 17% of this data was left censored. The asbestos air sampling methods in Ontario changed around 1990. LOD values of 0.06 f/cc and 0.02 f/cc were substituted for LOD values pre- and post-1990, respectively. The annual mean fiber levels for the MLE method were an average of 44% lower than KM and substitution methods. The corresponding APC for MLE method was -6.5% and -7.7% for KM and simple substitution. The findings of this paper illustrate how the temporal trend of an exposure databases can be used to efficiently estimate historic contaminant levels in the presence of limited historical information.
本文概述了个体工人职业病回顾性暴露评估所需的数据层次结构。然后逐步阐述了如何利用相对较大的暴露数据库进行趋势分析,以估算此类暴露。描述了如何准备一个包含暴露测量值的大型数据库,用于估算个体工人与其疾病相关的历史职业暴露情况。从一个名为医疗监测(MESU)的大型政府收集的空气监测数据库中选取了石棉子集,以说明清理和分析过程。去除无法识别的值后,检查清理后的数据集是否存在可能的变异性来源,如采样方案的变化。在使用左删失分析方法(即最大似然估计(MLE)、卡普兰-迈耶(KM)和简单替代)计算描述性统计量之前,用检测限(LOD)值替代所有未检测到的值。使用JoinPoint回归程序进行趋势分析,并计算可用采样期的年度百分比变化(APC)值。本文还通过一个石棉案例研究,说明如何将APC与更新的特定工作和/或工艺暴露数据相结合,以估算历史暴露水平。MESU石棉数据集包含1984年至1995年的1610个样本。该数据平均有17%为左删失数据。安大略省的石棉空气采样方法在1990年左右发生了变化。1990年之前和之后的LOD值分别用0.06 f/cc和0.02 f/cc替代。MLE方法的年平均纤维水平比KM和替代方法平均低44%。MLE方法对应的APC为-6.5%,KM和简单替代方法对应的APC为-7.7%。本文的研究结果表明,在历史信息有限的情况下,如何利用暴露数据库的时间趋势来有效估算历史污染物水平。