Suppr超能文献

免疫球蛋白G上用于增强效应功能的一种常见聚糖结构。

A common glycan structure on immunoglobulin G for enhancement of effector functions.

作者信息

Lin Chin-Wei, Tsai Ming-Hung, Li Shiou-Ting, Tsai Tsung-I, Chu Kuo-Ching, Liu Ying-Chih, Lai Meng-Yu, Wu Chia-Yu, Tseng Yung-Chieh, Shivatare Sachin S, Wang Chia-Hung, Chao Ping, Wang Shi-Yun, Shih Hao-Wei, Zeng Yi-Fang, You Tsai-Hong, Liao Jung-Yu, Tu Yu-Chen, Lin Yih-Shyan, Chuang Hong-Yang, Chen Chia-Lin, Tsai Charng-Sheng, Huang Chiu-Chen, Lin Nan-Horng, Ma Che, Wu Chung-Yi, Wong Chi-Huey

机构信息

Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan;

CHO Pharma Inc., Taipei 11503, Taiwan;

出版信息

Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10611-6. doi: 10.1073/pnas.1513456112. Epub 2015 Aug 7.

Abstract

Antibodies have been developed as therapeutic agents for the treatment of cancer, infection, and inflammation. In addition to binding activity toward the target, antibodies also exhibit effector-mediated activities through the interaction of the Fc glycan and the Fc receptors on immune cells. To identify the optimal glycan structures for individual antibodies with desired activity, we have developed an effective method to modify the Fc-glycan structures to a homogeneous glycoform. In this study, it was found that the biantennary N-glycan structure with two terminal alpha-2,6-linked sialic acids is a common and optimized structure for the enhancement of antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antiinflammatory activities.

摘要

抗体已被开发用作治疗癌症、感染和炎症的治疗剂。除了对靶标的结合活性外,抗体还通过Fc聚糖与免疫细胞上的Fc受体相互作用表现出效应器介导的活性。为了确定具有所需活性的单个抗体的最佳聚糖结构,我们开发了一种有效的方法,将Fc-聚糖结构修饰为均一的糖型。在本研究中,发现具有两个末端α-2,6-连接唾液酸的双天线N-聚糖结构是增强抗体依赖性细胞介导的细胞毒性、补体依赖性细胞毒性和抗炎活性的常见且优化的结构。

相似文献

1
A common glycan structure on immunoglobulin G for enhancement of effector functions.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10611-6. doi: 10.1073/pnas.1513456112. Epub 2015 Aug 7.
2
Crystal Structure of a Homogeneous IgG-Fc Glycoform with the N-Glycan Designed to Maximize the Antibody Dependent Cellular Cytotoxicity.
ACS Chem Biol. 2017 May 19;12(5):1335-1345. doi: 10.1021/acschembio.7b00140. Epub 2017 Mar 31.
3
Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity.
J Clin Invest. 2015 Nov 2;125(11):4160-70. doi: 10.1172/JCI82695. Epub 2015 Oct 5.
6
Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality.
Mol Immunol. 2007 Mar;44(7):1524-34. doi: 10.1016/j.molimm.2006.09.005. Epub 2006 Oct 11.
7
Terminal sugars of Fc glycans influence antibody effector functions of IgGs.
Curr Opin Immunol. 2008 Aug;20(4):471-8. doi: 10.1016/j.coi.2008.06.007. Epub 2008 Jul 17.
8
Chemoenzymatic Glyco-engineering of Monoclonal Antibodies.
Methods Mol Biol. 2015;1321:375-87. doi: 10.1007/978-1-4939-2760-9_25.
9
Impact of differential glycosylation on IgG activity.
Adv Exp Med Biol. 2011;780:113-24. doi: 10.1007/978-1-4419-5632-3_10.
10
Novel roles for the IgG Fc glycan.
Ann N Y Acad Sci. 2012 Apr;1253:170-80. doi: 10.1111/j.1749-6632.2011.06305.x. Epub 2012 Jan 30.

引用本文的文献

1
2
Making Universal Vaccines and Antibodies Through Glycoengineering.
Methods Mol Biol. 2025;2926:35-50. doi: 10.1007/978-1-0716-4542-0_3.
3
Current Landscape of Therapeutic Cancer Vaccines.
Methods Mol Biol. 2025;2926:1-14. doi: 10.1007/978-1-0716-4542-0_1.
4
Bisecting -Acetylglucosamine of the -Glycan of Immunoglobulin G Does Not Affect Binding to Fc Gamma Receptors.
ACS Chem Biol. 2025 Mar 21;20(3):680-689. doi: 10.1021/acschembio.4c00807. Epub 2025 Feb 19.
5
Cell-based glycoengineering for production of homogeneous and specific glycoform-enriched antibodies with improved effector functions.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2423853122. doi: 10.1073/pnas.2423853122. Epub 2025 Feb 19.
6
Biophysical Analysis of Therapeutic Antibodies in the Early Development Pipeline.
Biologics. 2024 Dec 21;18:413-432. doi: 10.2147/BTT.S486345. eCollection 2024.
7
Systematic Preparation of a 66-IgG Library with Symmetric and Asymmetric Homogeneous Glycans and Their Functional Evaluation.
J Am Chem Soc. 2024 Aug 21;146(33):23426-23436. doi: 10.1021/jacs.4c06558. Epub 2024 Aug 6.

本文引用的文献

1
Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect.
Cell. 2015 May 21;161(5):1035-1045. doi: 10.1016/j.cell.2015.04.016. Epub 2015 May 11.
2
Diversity in structure and functions of antibody sialylation in the Fc.
Curr Opin Biotechnol. 2014 Dec;30:147-52. doi: 10.1016/j.copbio.2014.06.014. Epub 2014 Jul 15.
4
Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions.
J Am Chem Soc. 2012 Jul 25;134(29):12308-18. doi: 10.1021/ja3051266. Epub 2012 Jul 16.
5
An endoglycosidase with alternative glycan specificity allows broadened glycoprotein remodelling.
J Am Chem Soc. 2012 May 16;134(19):8030-3. doi: 10.1021/ja301334b. Epub 2012 May 2.
8
A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins.
Science. 2011 Aug 12;333(6044):850-6. doi: 10.1126/science.1205669. Epub 2011 Jul 28.
9
Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12669-74. doi: 10.1073/pnas.1108455108. Epub 2011 Jul 18.
10
Rituximab resistance.
Best Pract Res Clin Haematol. 2011 Jun;24(2):203-16. doi: 10.1016/j.beha.2011.02.009. Epub 2011 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验