IEEE Trans Image Process. 2015 Nov;24(11):4359-71. doi: 10.1109/TIP.2015.2462113. Epub 2015 Aug 5.
Single image super-resolution (SR) aims to estimate a high-resolution (HR) image from a low-resolution (LR) input. Image priors are commonly learned to regularize the, otherwise, seriously ill-posed SR problem, either using external LR-HR pairs or internal similar patterns. We propose joint SR to adaptively combine the advantages of both external and internal SR methods. We define two loss functions using sparse coding-based external examples, and epitomic matching based on internal examples, as well as a corresponding adaptive weight to automatically balance their contributions according to their reconstruction errors. Extensive SR results demonstrate the effectiveness of the proposed method over the existing state-of-the-art methods, and is also verified by our subjective evaluation study.
单图像超分辨率 (SR) 旨在从低分辨率 (LR) 输入估计高分辨率 (HR) 图像。通常使用图像先验来正则化否则严重病态的 SR 问题,这些先验可以使用外部 LR-HR 对或内部相似模式来学习。我们提出联合 SR 来自适应地结合外部和内部 SR 方法的优点。我们使用基于稀疏编码的外部示例定义了两个损失函数,并使用基于内部分割的匹配定义了另一个损失函数,以及一个相应的自适应权重,根据它们的重建误差自动平衡它们的贡献。广泛的 SR 结果表明,与现有最先进的方法相比,该方法是有效的,并且我们的主观评估研究也验证了这一点。