Suppr超能文献

基于深度学习的使用GAN-CIRCLE从低分辨率CT扫描进行小梁骨微结构的高分辨率重建

Deep Learning Based High-Resolution Reconstruction of Trabecular Bone Microstructures from Low-Resolution CT Scans using GAN-CIRCLE.

作者信息

Guha Indranil, Nadeem Syed Ahmed, You Chenyu, Zhang Xiaoliu, Levy Steven M, Wang Ge, Torner James C, Saha Punam K

机构信息

Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242.

Department of Computer Science, Yale University, New Haven, CT 05620.

出版信息

Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2549318. Epub 2020 Feb 28.

Abstract

Osteoporosis is a common age-related disease characterized by reduced bone density and increased fracture-risk. Microstructural quality of trabecular bone (Tb), commonly found at axial skeletal sites and at the end of long bones, is an important determinant of bone-strength and fracture-risk. High-resolution emerging CT scanners enable measurement of Tb microstructures at peripheral sites. However, resolution-dependence of microstructural measures and wide resolution-discrepancies among various CT scanners together with rapid upgrades in technology warrant data harmonization in CT-based cross-sectional and longitudinal bone studies. This paper presents a deep learning-based method for high-resolution reconstruction of Tb microstructures from low-resolution CT scans using GAN-CIRCLE. A network was developed and evaluated using post-registered ankle CT scans of nineteen volunteers on both low- and high-resolution CT scanners. 9,000 matching pairs of low- and high-resolution patches of size 64×64 were randomly harvested from ten volunteers for training and validation. Another 5,000 matching pairs of patches from nine other volunteers were used for evaluation. Quantitative comparison shows that predicted high-resolution scans have significantly improved structural similarity index (p < 0.01) with true high-resolution scans as compared to the same metric for low-resolution data. Different Tb microstructural measures such as thickness, spacing, and network area density are also computed from low- and predicted high-resolution images, and compared with the values derived from true high-resolution scans. Thickness and network area measures from predicted images showed higher agreement with true high-resolution CT (CCC = [0.95, 0.91]) derived values than the same measures from low-resolution images (CCC = [0.72, 0.88]).

摘要

骨质疏松症是一种常见的与年龄相关的疾病,其特征是骨密度降低和骨折风险增加。小梁骨(Tb)的微观结构质量常见于轴向骨骼部位和长骨末端,是骨强度和骨折风险的重要决定因素。高分辨率的新型CT扫描仪能够测量外周部位的Tb微观结构。然而,微观结构测量对分辨率的依赖性、各种CT扫描仪之间广泛的分辨率差异以及技术的快速升级,使得基于CT的横断面和纵向骨研究中的数据协调成为必要。本文提出了一种基于深度学习的方法,使用GAN-CIRCLE从低分辨率CT扫描中对Tb微观结构进行高分辨率重建。利用19名志愿者在低分辨率和高分辨率CT扫描仪上进行的踝关节CT扫描后配准的数据,开发并评估了一个网络。从10名志愿者中随机采集9000对大小为64×64的低分辨率和高分辨率匹配图像块用于训练和验证。另外从其他9名志愿者中采集5000对匹配图像块用于评估。定量比较表明,与低分辨率数据的相同指标相比,预测的高分辨率扫描与真实高分辨率扫描的结构相似性指数显著提高(p < 0.01)。还从低分辨率和预测的高分辨率图像中计算了不同的Tb微观结构测量值,如厚度、间距和网络面积密度,并与从真实高分辨率扫描中得出的值进行比较。预测图像的厚度和网络面积测量值与真实高分辨率CT(CCC = [0.95, 0.91])得出的值的一致性高于低分辨率图像的相同测量值(CCC = [0.72, 0.88])。

相似文献

2
Deep learning-based harmonization of trabecular bone microstructures between high- and low-resolution CT imaging.
Med Phys. 2024 Jun;51(6):4258-4270. doi: 10.1002/mp.17003. Epub 2024 Feb 28.
3
Quantitative imaging of peripheral trabecular bone microarchitecture using MDCT.
Med Phys. 2018 Jan;45(1):236-249. doi: 10.1002/mp.12632. Epub 2017 Nov 23.
6
Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling.
Med Phys. 2022 Jun;49(6):3886-3899. doi: 10.1002/mp.15629. Epub 2022 Apr 5.
8
9
Application of a Novel Ultra-High Resolution Multi-Detector CT in Quantitative Imaging of Trabecular Microstructure.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2552385. Epub 2020 Mar 5.
10
Generation of Vertebra Micro-CT-like Image from MDCT: A Deep-Learning-Based Image Enhancement Approach.
Tomography. 2021 Nov 12;7(4):767-782. doi: 10.3390/tomography7040064.

引用本文的文献

1
Structure-property relationships in fibrous meniscal tissue through image-based augmentation.
Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240225. doi: 10.1098/rsta.2024.0225.
2
Super-resolution of clinical CT: Revealing microarchitecture in whole bone clinical CT image data.
Bone. 2024 Aug;185:117115. doi: 10.1016/j.bone.2024.117115. Epub 2024 May 11.
3
Deep learning-based harmonization of trabecular bone microstructures between high- and low-resolution CT imaging.
Med Phys. 2024 Jun;51(6):4258-4270. doi: 10.1002/mp.17003. Epub 2024 Feb 28.
4
A Survey on Artificial Intelligence in Pulmonary Imaging.
Wiley Interdiscip Rev Data Min Knowl Discov. 2023 Nov-Dec;13(6). doi: 10.1002/widm.1510. Epub 2023 Jul 7.
5
Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment.
Research (Wash D C). 2023 Oct 9;6:0239. doi: 10.34133/research.0239. eCollection 2023.
6
Class-Aware Adversarial Transformers for Medical Image Segmentation.
Adv Neural Inf Process Syst. 2022 Dec;35:29582-29596.
7
Preliminary landscape analysis of deep tomographic imaging patents.
Vis Comput Ind Biomed Art. 2023 Jan 23;6(1):3. doi: 10.1186/s42492-023-00130-x.
8
Multi-site cross-organ calibrated deep learning (MuSClD): Automated diagnosis of non-melanoma skin cancer.
Med Image Anal. 2023 Feb;84:102702. doi: 10.1016/j.media.2022.102702. Epub 2022 Nov 24.
9
Nuclear-medicine probes: Where we are and where we are going.
Med Phys. 2022 Jul;49(7):4372-4390. doi: 10.1002/mp.15690. Epub 2022 May 20.

本文引用的文献

1
NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.
PLoS Comput Biol. 2020 Sep 14;16(9):e1008193. doi: 10.1371/journal.pcbi.1008193. eCollection 2020 Sep.
2
CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE).
IEEE Trans Med Imaging. 2020 Jan;39(1):188-203. doi: 10.1109/TMI.2019.2922960. Epub 2019 Jun 14.
3
Structurally-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising.
IEEE Access. 2018;6:41839-41855. doi: 10.1109/ACCESS.2018.2858196. Epub 2018 Jul 20.
4
Computed tomography super-resolution using deep convolutional neural network.
Phys Med Biol. 2018 Jul 16;63(14):145011. doi: 10.1088/1361-6560/aacdd4.
5
Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation.
Sci Rep. 2018 Jun 11;8(1):8799. doi: 10.1038/s41598-018-27261-z.
6
Super-resolution musculoskeletal MRI using deep learning.
Magn Reson Med. 2018 Nov;80(5):2139-2154. doi: 10.1002/mrm.27178. Epub 2018 Mar 26.
7
Quantitative imaging of peripheral trabecular bone microarchitecture using MDCT.
Med Phys. 2018 Jan;45(1):236-249. doi: 10.1002/mp.12632. Epub 2017 Nov 23.
8
Fuzzy Object Skeletonization: Theory, Algorithms, and Applications.
IEEE Trans Vis Comput Graph. 2018 Aug;24(8):2298-2314. doi: 10.1109/TVCG.2017.2738023. Epub 2017 Aug 10.
9
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
IEEE Trans Med Imaging. 2017 Dec;36(12):2536-2545. doi: 10.1109/TMI.2017.2708987. Epub 2017 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验