IEEE Trans Image Process. 2016 May;25(5):2168-86. doi: 10.1109/TIP.2016.2542442.
Super-resolution (SR) from a single image plays an important role in many computer vision applications. It aims to estimate a high-resolution (HR) image from an input low- resolution (LR) image. To ensure a reliable and robust estimation of the HR image, we propose a novel single image SR method that exploits both the local geometric duality (GD) and the non-local similarity of images. The main principle is to formulate these two typically existing features of images as effective priors to constrain the super-resolved results. In consideration of this principle, the robust soft-decision interpolation method is generalized as an outstanding adaptive GD (AGD)-based local prior. To adaptively design weights for the AGD prior, a local non-smoothness detection method and a directional standard-deviation-based weights selection method are proposed. After that, the AGD prior is combined with a variational-framework-based non-local prior. Furthermore, the proposed algorithm is speeded up by a fast GD matrices construction method, which primarily relies on the selective pixel processing. The extensive experimental results verify the effectiveness of the proposed method compared with several state-of-the-art SR algorithms.
从单张图像进行超分辨率 (SR) 在许多计算机视觉应用中起着重要作用。它旨在从输入的低分辨率 (LR) 图像估计高分辨率 (HR) 图像。为了确保 HR 图像的可靠和稳健估计,我们提出了一种新颖的单图像 SR 方法,该方法利用图像的局部几何对偶性 (GD) 和非局部相似性。主要原理是将这两个图像中典型的现有特征表述为有效先验,以约束超分辨率结果。考虑到这一原理,稳健的软决策插值方法被推广为一种出色的基于自适应 GD (AGD) 的局部先验。为了自适应地设计 AGD 先验的权重,提出了一种局部非平滑度检测方法和一种基于方向标准差的权重选择方法。之后,将 AGD 先验与基于变分框架的非局部先验相结合。此外,所提出的算法通过一种快速的 GD 矩阵构建方法得以加速,该方法主要依赖于选择性像素处理。广泛的实验结果验证了与几种最先进的 SR 算法相比,所提出方法的有效性。